• 제목/요약/키워드: structural damage identification

검색결과 341건 처리시간 0.022초

내재민감도 함수를 이용한 단열타일의 손상 탐지 기법 (Structural Damage Detection for Metal Panel Using Embedded Sensitivity Functions)

  • 양철호;더글러스 아담스
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.697-705
    • /
    • 2005
  • Vibration-based damage identification method using embedded sensitivity functions is discussed. The theory of embedded sensitivity functions is reviewed and applied to identify damage in a three degree-of-freedom system and a metallic panel. Embedded sensitivity functions are algebraic combinations of measured frequency response functions that reflect changes in the response of mechanical systems when mass, damping or stiffness parameters are changed. By comparing the embedded sensitivity functions with finite difference functions using undamaged and damaged frequency response functions, damage is shown to be properly detected, located and quantified in theory and practice assuming that structures of interest are only damaged in one location. Simulated and experimental results indicate that the technique is most effective when changes to frequency response functions are small to avoid distorsions in the estimated perturbations due to variations in the sensitivity functions.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Structural health monitoring of innovative civil engineering structures in Mainland China

  • Li, Hong-Nan;Li, Dong-Sheng;Ren, Liang;Yi, Ting-Hua;Jia, Zi-Guang;LI, Kun-Peng
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.1-32
    • /
    • 2016
  • This paper describes the backgrounds, motivations and recent history of structural health monitoring (SHM) developments to various types of engineering structures. Extensive applications of SHM technologies in bridges, high-rise buildings, sport avenues, offshore platforms, underground structures, dams, etc. in mainland China are summarily categorized and listed in tables. Sensors used in implementations, their deployment, damage identification strategies if applicable, preliminary monitoring achievements and experience are presented in the lists. Finally, existing problems and promising research efforts in civil SHM are discussed, highlighting challenges and future trends.

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

교량의 건전성 모니터링을 위한 효율적인 접근방법 (Effective Approaches for Structural Health Monitoring of Bridges)

  • Jong-Jae, Lee;Chung-Bang, Yun
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.135-142
    • /
    • 2004
  • Two-step identification approach for effective bridge health monitoring is proposed to alleviate the issues associated with many unknown parameters faced in the real structures and to improve the accuracy in the estimate results. It is suitable for on-line monitoring scheme, since the damage assessment is not always needed to be carried out whereas the alarming for damages is to be continuously monitored. In the first step for screening potential damaged members, damage indicator method based on modal strain energy, probabilistic neural networks and the conventional neural networks using grouping technique are used and then the conventional neural network technique is utilized for damage assessment on the screened members in the second step. The proposed methods are verified through a field test on the northern-most span of old Hannam Grand Bridge.

  • PDF

공액보 방법을 이용한 교량 손상도 평가기법 (A Damage Assessment Technique for Bridges Using Conjugate Beam Theory)

  • 최일윤;최은수;이준석;조효남
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.603-610
    • /
    • 2003
  • 본 논문에서는 공액보이론을 이용한 교량의 손상추정 기법을 제시하였다. 정적처짐과 강성과의 관계식으로부터 최적화기법을 도입하여 손상 위치 및 정도을 추정하였다. 제안된 기법의 타당성 검정을 위하여 수치모형을 통한 손상도 추정을 수행하였으며, 일반적으로 손상추 정결과의 정확도를 감소시키는 노이즈의 영향을 분석하기 위하여 정적응답자료에 백색잡음을 추가하여 손상도 평가를 수행하였다. 또한, 개발된 기법의 현장적용성을 검토하기 위하여 실내실험을 실시하고, 실험데이터를 이용하여 손상도 추정을 수행하였다 또한, 손상의 정도 및 손상 폭이 손상 추정결과에 미치는 영향을 검토하기 위하여 다양한 손상 폭을 갖는 경우에 대하여 손상을 추정하였으며, 이들 결과를 바탕으로 제시된 기법의 적용성과 한계에 대하여 기술하였다

Detection of structural damage via free vibration responses by extended Kalman filter with Tikhonov regularization scheme

  • Zhang, Chun;Huang, Jie-Zhong;Song, Gu-Quan;Dai, Lin;Li, Huo-Kun
    • Structural Monitoring and Maintenance
    • /
    • 제3권2호
    • /
    • pp.115-127
    • /
    • 2016
  • It is a challenging problem of assessing the location and extent of structural damages with vibration measurements. In this paper, an improved Extended Kalman filter (EKF) with Tikhonov regularization is proposed to identify structural damages. The state vector of EKF consists of the initial values of modal coordinates and damage parameters of structural elements, therefore the recursive formulas of EKF are simplified and modal truncation technique can be used to reduce the dimension of the state vector. Then Tikhonov regularization is introduced into EKF to restrain the effect of the measurement noise for improving the solution of ill-posed inverse problems. Numerical simulations of a seven-story shear-beam structure and a simply-supported beam show that the proposed method has good robustness and can identify the single or multiple damages accurately with the unknown initial structural state.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.