• Title/Summary/Keyword: structural complexity

Search Result 444, Processing Time 0.026 seconds

Development of a Simulation Prediction System Using Statistical Machine Learning Techniques (통계적 기계학습 기술을 이용한 시뮬레이션 결과 예측 시스템 개발)

  • Lee, Ki Yong;Shin, YoonJae;Choe, YeonJeong;Kim, SeonJeong;Suh, Young-Kyoon;Sa, Jeong Hwan;Lee, JongSuk Luth;Cho, Kum Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.593-606
    • /
    • 2016
  • Computer simulation is widely used in a variety of computational science and engineering fields, including computational fluid dynamics, nano physics, computational chemistry, structural dynamics, and computer-aided optimal design, to simulate the behavior of a system. As the demand for the accuracy and complexity of the simulation grows, however, the cost of executing the simulation is rapidly increasing. It, therefore, is very important to lower the total execution time of the simulation especially when that simulation makes a huge number of repetitions with varying values of input parameters. In this paper we develop a simulation service system that provides the ability to predict the result of the requested simulation without actual execution for that simulation: by recording and then returning previously obtained or predicted results of that simulation. To achieve the goal of avoiding repetitive simulation, the system provides two main functionalities: (1) storing simulation-result records into database and (2) predicting from the database the result of a requested simulation using statistical machine learning techniques. In our experiments we evaluate the prediction performance of the system using real airfoil simulation result data. Our system on average showed a very low error rate at a minimum of 0.9% for a certain output variable. Using the system any user can receive the predicted outcome of her simulation promptly without actually running it, which would otherwise impose a heavy burden on computing and storage resources.

Investigation on Supporting Policies and Problems of Shale Gas Development in China (중국 셰일가스 개발 문제점과 지원정책 분석)

  • Lee, Chaeyoung;Yoon, Junil;Lee, Hong;Lee, Youngsoo;Shin, Changhoon
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.54-65
    • /
    • 2015
  • China holding the world largest shale resources, has been trying to develop their domestic shale gas fields mainly with its NOCs. Chinese shale industry looks likely to have high potential to grow in the future, considering the eager support of Chinese government and the rapid development of relevant technologies by NOCs. However, there are opposite opinions as well that Chinese shale gas could not play a positive short-term results because of the complexity of structural geology, inadequacy of water resources and related infrastructure. Recently, Korean companies began to be interseted in Chinese shale gas industry, because of the special relationships with Korean industries in terms of geographic proximity and better opportunities due to the early phase of shale gas business in China. In this study, it was tried to help those companies looking out of future Chinese shale gas industry that surveying current status and problems of Chinese shale gas industry and relevant industries and investigating some trials and policies driven by China government. As a result, the various and long-term problems in Chinese shale development were reviewed and the active supports and polices of Chinese government, NOC's trials for establishments of their independent technologies and the cooperation with foreign companies or M&As were also investigated.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

A Study on Emergency Evacuation Route Planning and USN-Based Induction Activities of Correctional Facilities (교정시설의 비상시 피난경로계획 및 USN기반 대피유도활동에 관한 연구)

  • Park, Joo-Hyung;Park, Jong-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.39-46
    • /
    • 2011
  • In correctional facilities with majority of occupants in custody, the safe evacuation guide without getaway accidents should be very important due to complexity in escape paths. Fire causes are various in correctional facilities, for example, arson fire is a major cause in mental treatment facilities, however, old facilities or carelessness of flammable materials consist of fire causes in jail facilities. Both types of correctional facilities are the same in terms of many casualties from the fire cases. The thesis focus on escape paths and evacuation guide plans on the basis of analysis on fire cases and structural vulnerability, and then an electronic unlocking system is concededly installed for safe evacuation of occupants in custody without getaway accidents. Especially, the effect of the electronic unlocking system is going to be analyzed on the basis of RSET (required safe egress time) in order to realize for the occupants to evacuate safely to the front yard in case of emergency. In conclusion, if electronic security allowed system with USN (Ubiquitous Sensor Networks) technology should be installed in multi-storey correctional buildings, it is proposed that the occupants in custody might be a guided safely without getaway trials.

The Impact of COVID-19 on the Labor Market in India: Focusing on the Expansion of the Labor Gap and Digitization (COVID-19가 인도 노동시장에 미친 영향: 노동격차 확대와 디지털화를 중심으로)

  • Kang, Sung Yong;Lee, Myung Moo;Kim, Yun Ho;Nam, Eun Young;Lee, Sang Keon
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.102-114
    • /
    • 2021
  • India has recently experienced an acute crisis confronting the COVID-19 pandemic as confirmed cases exceeded 11.73 million in March 2021, which was the second worst scale only after the United States. The strict lockdown measures as well as the pandemic itself posed a serious threat of survival, in particular, to immigrant workers engaged in informal sectors, which triggered their reverse immigration. In case the COVID-19 pandemic continues in 2021, it is estimated that in the sector of tourism and service alone, more than 20 million jobs will disappear. The damage on industry is already being realized with the significant decrease of workforce. It is important to note, however, that jobless growth and labor polarization were observed even before the outbreak of COVID-19, and that the pandemic only served as one of the trigger catalysts that made those submerged problems burst out. In this study, we examine the structural problems in industry and labor market in India and consider the social context and efficacy of the "Make in India" or "Atmanirbhar Bhrat" policy. The latter initiative was presented in the trenches of the pandemic in 2020. While considering the complexity of problems, we would like to pursue a future-oriented approach and propose a direction in restructuring the labor market, attempted at reversing the critical conditions following the fourth industrial revolution and digitization into the shortcut to labor market restructuring.

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

Organizational-Economic Mechanism of Providing Sustainability of the Region's Development Based on the Impact of the Potential-Forming Space in the Conditions of the Creative Economy Formation

  • Khanin, Semen;Derhaliuk, Marta;Arefieva, Olena;Murashko, Mykola;Nusinova, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.348-356
    • /
    • 2022
  • The article is devoted to substantiation of theoretical and methodical bases of formation of the organizational-economic mechanism of maintenance of stability of development of region on the bases of influence of potential-forming space in the conditions of formation of creative economy. It was found that the organizational-economic mechanism due to its multifaceted nature does not have a single generally accepted definition, and its acceptable scale and complexity is reflected in the structure, which is very dependent on the scope and conditions of its application, can be very different and contain different elements. In view of this, in order to highlight the characteristics that are inherent in the organizational-economic mechanism of sustainable development of the region on the basis of potential-forming space in the formation of creative economy, the article examines the properties and characteristics of direct organizational and economic mechanism. The necessity of basing the process of formation of any organizational-economic mechanism, including the organizational-economic mechanism of ensuring the sustainability of the region on the basis of the potential-forming space in the conditions of creative economy on the system of principles. In this context, the author's vision is proposed and a set of principles for the formation of organizational-economic mechanism for sustainable development of the region on the basis of the potential of the potential-forming space in the creative economy, as well as revealed the essence of each. According to the structural aspect, the organizational-economic mechanism of ensuring the sustainability of the region's development on the basis of the potential-forming space is proposed to be presented as a set of seven stages, which are implemented in a certain sequence. Within the limits of this research the sequence of realization of the stages making process of formation of the organizational-economic mechanism of maintenance of stability of development of region on the basis of influence of potential-forming space in the conditions of formation of creative economy is defined and their maintenance and essence is presented.

The Effect of Technostress on User Resistance and End-User Performance (테크노스트레스가 사용자 저항과 성과에 미치는 영향)

  • Kyoung-June Kim;Ki-Dong Lee
    • Information Systems Review
    • /
    • v.19 no.4
    • /
    • pp.63-85
    • /
    • 2017
  • Recent information technology achieves remarkable progress in almost all areas where it can be applied. However, this technology also causes technostress, such as fear and pressure to individuals, due to events, such as the threat of job loss. This technostress is becoming an important factor that can affect user performance and productivity in future society where information technology will be the focus. This kind of stress should be studied considerably in academic and practical applications. The effects of technostress on individual performance remain ambiguous. Therefore, academic research is needed to prove these effects. This study aimed to clarify the direct and indirect effects of technostress on information technology end-users. We developed a research model that integrates innovation resistance and technostress theory through previous studies and analyzed the questionnaire of 317 people. The PLS structural equation model and the study results of Baron and Kenny (1986) indicated that rapid change, connectivity, reliability, and complexity are crucial factors affecting the technostress of information technology. Technostress was analyzed indirectly only through innovation resistance, which affected the performance of end-users. This study will provide new implications for the relationship between technostress and performance or productivity in the IS field.

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON;Junsik BANG;Sang-Woo PARK;Jungkyu KIM;Minjung JUNG;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.221-233
    • /
    • 2024
  • Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.

A Scalable and Modular Approach to Understanding of Real-time Software: An Architecture-based Software Understanding(ARSU) and the Software Re/reverse-engineering Environment(SRE) (실시간 소프트웨어의 조절적${\cdot}$단위적 이해 방법 : ARSU(Architecture-based Software Understanding)와 SRE(Software Re/reverse-engineering Environment))

  • Lee, Moon-Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3159-3174
    • /
    • 1997
  • This paper reports a research to develop a methodology and a tool for understanding of very large and complex real-time software. The methodology and the tool mostly developed by the author are called the Architecture-based Real-time Software Understanding (ARSU) and the Software Re/reverse-engineering Environment (SRE) respectively. Due to size and complexity, it is commonly very hard to understand the software during reengineering process. However the research facilitates scalable re/reverse-engineering of such real-time software based on the architecture of the software in three-dimensional perspectives: structural, functional, and behavioral views. Firstly, the structural view reveals the overall architecture, specification (outline), and the algorithm (detail) views of the software, based on hierarchically organized parent-chi1d relationship. The basic building block of the architecture is a software Unit (SWU), generated by user-defined criteria. The architecture facilitates navigation of the software in top-down or bottom-up way. It captures the specification and algorithm views at different levels of abstraction. It also shows the functional and the behavioral information at these levels. Secondly, the functional view includes graphs of data/control flow, input/output, definition/use, variable/reference, etc. Each feature of the view contains different kind of functionality of the software. Thirdly, the behavioral view includes state diagrams, interleaved event lists, etc. This view shows the dynamic properties or the software at runtime. Beside these views, there are a number of other documents: capabilities, interfaces, comments, code, etc. One of the most powerful characteristics of this approach is the capability of abstracting and exploding these dimensional information in the architecture through navigation. These capabilities establish the foundation for scalable and modular understanding of the software. This approach allows engineers to extract reusable components from the software during reengineering process.

  • PDF