• Title/Summary/Keyword: structural applications

Search Result 1,959, Processing Time 0.023 seconds

Structural optimization in practice: Potential applications of genetic algorithms

  • Krishnamoorthy, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-170
    • /
    • 2001
  • With increasing competition, the engineering industry is in need of optimization of designs that would lead to minimum cost or weight. Recent developments in Genetic Algorithms (GAs) makes it possible to model and obtain optimal solutions in structural design that can be put to use in industry. The main objective of this paper is to illustrate typical applications of GAs to practical design of structural systems such as steel trusses, towers, bridges, reinforced concrete frames, bridge decks, shells and layout planning of buildings. Hence, instead of details of GA process, which can be found in the reported literature, attention is focussed on the description of the various applications and the practical aspects that are considered in Genetic Modeling. The paper highlights scope and future directions for wider applications of GA based methodologies for optimal design in practice.

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

Toward a paradigm for civil structural control

  • Casciati, S.;Chassiakos, A.G.;Masri, S.F.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.981-1004
    • /
    • 2014
  • Structural control is a very broad field combining the areas of automatic control and structural engineering, with applications ranging from aerospace and mechanical engineering to building and civil infrastructure systems. In this paper, the focus is placed on civil engineering applications only. The goal is to address the issues concurring to form the scientific paradigm. As a resut, possible future directions of research into this field are identified.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

Reviews on innovations and applications in structural health monitoring for infrastructures

  • Li, Hong-Nan;Yi, Ting-Hua;Ren, Liang;Li, Dong-Sheng;Huo, Lin-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.1-45
    • /
    • 2014
  • The developments and implementations of the structural health monitoring (SHM) system for large infrastructures have been gradually recognized by researchers, engineers and administrative authorities in the last decades. This paper summarizes an updated review on innovations and applications in SHM for infrastructures carried out by researchers at Dalian University of Technology. Invented sensors and data acquisition system are firstly briefly described. And then, some proposed theories and methods including the sensing technology, sensor placement method, signal processing and data fusion, system identification and damage detection are discussed in details. Following those, the activities on the standardization of SHM and several case applications on specific types of structure are reviewed. Finally, existing problems and promising research efforts in the field of SHM are given.

Evolution of concrete encased - CFST column: A comprehensive review on structural behavior and performance characteristics

  • Namitha Raveendran;Vasugi K
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.619-645
    • /
    • 2024
  • In the construction industry, composite structures have revolutionized traditional design principles, opening innovative possibilities. The Concrete Encased - Concrete Filled Steel Tubular (CE-CFST) column stands out as a distinctive composite structure, offering structural stability and resilience for various engineering applications. Comprising Reinforced Concrete (RC) and Concrete Filled Steel Tubular (CFST) components, CE-CFST columns are valued for their inherent properties, including ductility and rigidity, CE-CFST is commonly used in the construction of bridges, high-rise buildings, and more. This article aims to provide a concise overview of the evolutionary development of CE-CFST columns and their performance in structural applications. Through a comprehensive review, the study delves into the behaviour of CE-CFST columns under different scenarios. It examines the influences of key parameters such as size, infills, cross section, failure causes, and design codes on the performance of CE-CFST columns, highlighting their enhanced functionality and future potential. Moreover, the review meticulously examines previous applications of CE-CFST columns, offering insights into their practical implementation.

Intelligent algorithm and optimum design of fuzzy theory for structural control

  • Chen, Z.Y.;Wang, Ruei-Yuan;Meng, Yahui;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.537-544
    • /
    • 2022
  • The optimal design of structural composite materials is a research topic that attracts the attention of lots researchers. For many more thirty years, there has been increasing interest in the applications in all kinds of topics, which means taking advantage of fuzzy set theory, fuzzy analysis, and fuzzy control for designing high-performance and efficient structural systems is a fundamental concern for engineers, and many applications require the use of a systems approach to combine structural and active control systems. Therefore, an intelligent method can be designed based on the mitigation method, and by establishing the stable of the closed-loop fuzzy mitigation system, the behavior of the closed-loop fuzzy mitigation system can be accurately predicted. In this article, the intelligent algorithm and optimum design of fuzzy theory for structural control has been provided and demonstrated effective and efficient in practical engineering issues.