• Title/Summary/Keyword: structural and electrical properties

Search Result 1,605, Processing Time 0.023 seconds

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

Thickness-dependent Electrical, Structural, and Optical Properties of ALD-grown ZnO Films

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2014
  • The thickness dependent electrical, structural, and optical properties of ZnO films grown by atomic layer deposition (ALD) at various growth temperatures were investigated. In order to deposit ZnO films, diethylzinc and deionized water were used as metal precursor and reactant, respectively. ALD process window was found at the growth temperature range from $150^{\circ}C$ to $250^{\circ}C$ with a growth rate of about $1.7{\AA}/cycle$. The electrical properties were studied by using van der Pauw method with Hall effect measurement. The structural and optical properties of ZnO films were analyzed by using X-ray diffraction, field emission scanning electron microscopy, and UV-visible spectrometry as a function of thickness values of ZnO films, which were selected by the lowest electrical resistivity. Finally, the figure of merit of ZnO films could be estimated as a function of the film thickness. As a result, this investigation of thickness dependent electrical, structural, and optical properties of ZnO films can provide proper information when applying to optoelectronic devices, such as organic light-emitting diodes and solar cells.

Luminescence properties of ZnO thin films depending on the variation of the film thickness (ZnO 박막의 두께변화에 따른 광학적 특성변화 연구)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF

The Effect of Substrate Temperature on Tribological and Electrical Properties of Sputtered Carbon Nitride Thin Film (스퍼터링 질화탄소 박막의 트라이볼로지 및 전기적 특성의 기판 온도 영향)

  • Park, Chan Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Using facing target magnetron sputtering (FTMS) with a graphite target source, carbon nitride thin films were deposited on silicon and glass substrates at different substrate temperatures to confirm the tribological, electrical, and structural properties of thin films. The substrate temperatures were room temperature, 150℃, and 300℃. The tribology and electrical properties of the carbon nitride thin films were measured as the substrate temperature increased, and a study on the relation between these results and structural properties was conducted. The results show that the increase in the substrate temperature during the fabrication of the carbon nitride thin films increased the hardness and elastic modulus values, the critical load value was increased, and the residual stress value was reduced. Moreover, the increase in the substrate temperature during thin-film deposition was attributed to the improvement in the electrical properties of carbon nitride thin film.

Electrical properties of NKN-0.94BNT-0.06BT ceramics (NKN-0.94BNT-0.06BT 세라믹스의 전기적특성)

  • Lee, Young-Hie;Nam, Sung-Pill;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Seung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.298-298
    • /
    • 2010
  • In this study, both structural, dielectric properties of the NKN-0.94BNT-0.06BT ceramics were investigated. All samples of the NKN-0.94BNT-0.06BT ceramics were fabricated by conventional mixed oxide method with Pt electrodes. We report the improved electrical properties in the perovskite structure composed of the NKN, BNT and the BT ceramics. We investigated the effects of NKN, BT on the structural and electrical properties of the NKN-0.94BNT-0.06BT ceramics. The dielectric and structural properties of the NKN-0.94BNT-0.06BT ceramics were superior to those of single composition NKN, NKN-BNT and those values for the NKN-0.94BNT-0.06BT ceramics were 1455, 0.025 and $29.04{\mu}C/cm^2$.

  • PDF

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Structural, Optical, and Electrical Properties of Sputtered Al doped ZnO Thin Film Under Various RF Powers (RF 파워에 따라 스퍼터된 Al doped ZnO 박막의 구조적, 광학적, 전기적 특성)

  • Kim, Jong-Wook;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.177-181
    • /
    • 2011
  • We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films being usable in transparent conducting oxides. The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of AZO for transparent conducting oxides, the RF power in sputtering process was varied as 40 W, 60 W, and 80 W, respectively. As RF power increased, the crystallinity of AZO thin film was decreased, the optical bandgap of AZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in RF power. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with increasing RF power. The structural, optical, and electrical properties of the AZO thin films were affected by Al dopant content in AZO thin film.

Electrical Properties of ZnO:Al Transparent Conducting Thin Films for Film-Typed Dye Sensitized Solar Cell

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.11
    • /
    • pp.36-43
    • /
    • 2008
  • In this parer aluminium-doped zinc oxide(ZnO:Al) conducting layer was deposited on polyethylene terephthalate(PET) substrate by r. f. magnetron sputtering method. The effects of gas pressure and r. f. sputtering power on the structural and electrical properties of ZnO:Al thin film were investigated experimentally. Especially the effect of position of PET substrate on the electrical properties of the film was studied and fixed to improve the electrical properties and also to increase the deposition rate. The results show that the structural and electrical properties of ZnO:Al thin film were strongly influenced by the gas pressure and sputtering power. The minimum resistivity of $1.1{\times}10^{-3}[{\Omega}-cm]$ was obtained at 5[mTorr] of gas pressure, and 18D[W] of sputtering power. The deposition rate of ZnO:Al film at 5[mTorr] of gas pressure was 248[nm/min]. and is higher by around 3 times compared to that at 25[mTorr].