• Title/Summary/Keyword: structural analysis and design

Search Result 6,894, Processing Time 0.034 seconds

Full Scale Structural Testing of Small Wind Turbine Composite Blade (풍력발전용 소형복합재 블레이드의 실규모 구조시험)

  • Kim, Hong-Kwan;Kim, Tae-Seong;Lee, Jang-Ho;Moon, Byung-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1407-1413
    • /
    • 2011
  • In this paper, the structural design for composite blade was performed and full scale structural test was conducted to verify the structural design and integrity of composite blade. Firstly, FE analysis was performed using commercial software ABAQUS under conditions of rated wind speed and Case H in IEC 61400-2. Lay-up sequence and ply thickness were designed based on FE results. And to verify the structural design, full scale structural test was conducted according to IEC 61400-2 under identical loading conditions of FE analysis. Finally, the force-deflection and local strain behavior of composite blade were evaluated.

A Study on the two span preflex composite girder bridges with LRFD (LRFD에 의한 2경간 Preflex 합성형교에 관한 연구)

  • 구민세;박영제;오석태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-102
    • /
    • 1999
  • Preflex beams are prestressed by the predeflection technique, which enables the use of concrete-encased high strength steel beams where deflection or cracking of concrete, or both, would otherwise be excessive. This study presents the analysis of the two span preflex composite girder bridges with Load and Resistance Factor Design(LRFD), which is most widely used design nile in the advanced states. The results show that the comparison of LRR with Allowable Stress Design(ASD) according to span length.

  • PDF

Structural Design of a Dental Implant (2): Test Drafting and Manufacturing (치과용 임플란트 구조설계 (2): 시험설계 및 가공제작)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • This paper is the second paper among two papers which constitute the paper about the structural design of a dental implant. This paper completed the test drafting for the structural model of the new dental implant whose structural performance was confirmed and verified through the comparative structural analysis carried out in the first paper. This paper finished the structural design of a dental implant by manufacturing the dental implant using CNC machines and so forth on the basis of the completed draft and finally by evaluating the machining condition of the dental implant. The drafting work was performed using MDT(Mechanical Desk Top). The manufacturing work was carried out using CNC machines, general purpose milling machine, and Wire EDM. The manufactured surface condition of the dental implant was evaluated and confirmed finally using an electron microscope. As a result of evaluation, a testing dental implant with very good condition was designed and manufactured.

Design and Analysis of a Tilting Actuator for a Projection TV (프로젝션 TV 용 틸팅 액츄에이터의 설계 및 분석)

  • Im, Hyung-Bin;Park, Chul-Jun;Park, Jong-Yong;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.743-748
    • /
    • 2007
  • This paper describes a lens transmissive type tilting actuator for a projection TV. An electromagnetic analysis and a structural analysis of the tilting actuator system is necessary to design a tilting actuator for a projection TV. The tilting actuator is composed a permanent magnet, coil and yoke as the electromagnetic components and it needs a driving hinge part as the mechanical component. The design of the tilting actuator for the projection TV is performed by the following procedure. Firstly, a magnetic flux density of the tilting actuator system is analyzed by a mathematical theory and an electromagnetic FEM. Secondary, a magnetic circuit method is used to determine tilting force. Thirdly, the structural FEM is carried out with an FE model of a lens-transmissive type tilting actuator and then the prototype of the model is manufactured. The characteristic of the prototype is experimentally observed. Finally, a design for a new hinge configuration is suggested for better performance.

  • PDF

A Study on the Design Concept and Simplified Analysis Method in Dropped Object Accidents by Lifting Crane (크레인 중량물 낙하사고에 대응한 설계개념과 간이 해석법에 대한 연구)

  • Kim, Ul-Nyeon;Kim, Han-Byul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.251-262
    • /
    • 2019
  • This paper is about design concept and simplified analysis method against dropped object events. The ships and offshore structures are exposed to various types of dropped object accidents such as laydown area struck by drill collar and topside deck hit by food container during their lifetime. Mitigation can be accomplished by proper facility layout and designing structures to safely absorb energy from accidental loads. It shall be designed to avoid loss of life, environmental pollution and loss of assets. Impact loads can lead to structural global collapse of the main structure or punching of a local barrier type structure with potential to escalate directly or indirectly to a global collapse of the structure. This study provides the background information on the issue of dropped object of the shipyard and also focuses on structural assessment of the local individual component such as deck plate, stiffener and web/girder by using simplified analysis method. The results of the simplified analysis method were compared with numerical results using non-linear finite element simulation.

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

DEVELOPMENT OF AN IMPROVED THREE-DIMENSIONAL STATIC AND DYNAMIC STRUCTURAL ANALYSIS BASED ON FETI-LOCAL METHOD WITH PENALTY TERM

  • KIM, SEIL;JOO, HYUNSHIG;CHO, HAESEONG;SHIN, SANGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.125-142
    • /
    • 2017
  • In this paper, development of the three-dimensional structural analysis is performed by applying FETI-local method. In the FETI-local method, the penalty term is added as a preconditioner. The OPT-DKT shell element is used in the present structural analysis. Newmark-${\beta}$ method is employed to conduct the dynamic analysis. The three-dimensional FETI-local static structural analysis is conducted. The contour and the displacement of the results are compared following the different number of sub-domains. The computational time and memory usage are compared with respect to the number of CPUs used. The three-dimensional dynamic structural analysis is conducted while applying FETI-local method. The present results show appropriate scalability in terms of the computational time and memory usage. It is expected to improve the computational efficiency by combining the advantages of the original FETI method, i.e., FETI-mixed using the mixed local-global Lagrange multiplier.

A Preliminary Structural Design Study on High Performance Container Crane

  • Kim, Ki-Sung;Hong, Ki-Sup;Tae, Jae-Cheol
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.1-20
    • /
    • 2007
  • After the introduction of the World Trade Organization, large scale container ships are being used as a means of transportation for international trade. Therefore, improving the loading and unloading capability of container quays is the most economic way, considering the cost needed for the establishment or expansion of container quays. In this paper, a new container cargo handing system that is equipped with a high performance container crane is suggested. A structural analysis on the container crane is also conducted to decide the form and size of structural member scantlings, using NASTRAN, which is a general structure analysis program.

Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture (골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용)

  • Chung, Woo-Yang;Eckelman, Carl A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.