• Title/Summary/Keyword: structural analysis and design

Search Result 6,894, Processing Time 0.035 seconds

A Study on the Structural Design of a Seat frame in Automotive Vehicles (승용차 시트프레임의 구조설계에 관한 연구)

  • 김홍건;조영태;최금호;이병휘
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.159-163
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product, studies on material selection, and structural analyses were performed. Structural analyses were performed with a finite element analysis. Analyses were done for several cases suggested in various safety regulations of FMVSS(Federal Motor Vehicle Safety Standards). Each result was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure. Substitution of the material resulted in a weight reduction effect with equivalent strength, fatigue and impact characteristics. Furthermore, several effects from the replacement of the material besides weight reduction were also examined.

  • PDF

Notional-Load Plastic-Hinge Method for Steel Structure Design (강구조 설계를 위한 가상하중 소성활절 해석)

  • 김승억;윤영묵
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.103-113
    • /
    • 1996
  • This paper presents practical notional-load plastic-hinge method for a two-dimensional steel structure design. The proposed method incorporates the refined plastic-hinge concept for spread of plasticity together with a practical notional-load approach. The proposed method can assess realistically both strength and behavior of a structural system and its individual members in a direct manner. As a result, the method can be used for design without tedious separate member capacity checks, including the calculation of K-factor. The strengths predicted by the proposed method are then compared with those predicted by the exact plastic-zone analysis as well as by the conventional LRFD procedure. A good agreement is generally observed. The displacement predictions are compared with the plastic-zone solutions. Analysis and design guidelines in using the proporsed method are given in detail. Analysis and design procedures are recommended. Member sizes determined by the proposed method are compared with those determined by the LRFD method. It is concluded that the procedures are suitable for adoption in practice.

  • PDF

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Structural Analysis for Newly Installed Blade Antenna of Rotorcraft (신규 블레이드 안테나 장착을 위한 노후 회전익 항공기 구조 해석 연구)

  • Yu, Jeong-O;Kim, Jae-Yong;Choi, Hang-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.106-112
    • /
    • 2021
  • In this study, we performed a design and structural analysis of a blade-shaped antenna installation on the rear fuselage of a rotary wing aircraft operated by the military. When the structure is damaged while the aircraft is in operation, it is separated from the aircraft main structure and may collide with the rotor or blades to cause the aircraft to crash. Therefore, structural safety for the modified structure must be secured. The design requirement for the newly installed modified part were established, and the load condition was constructed by applying the load that may occur in the aircraft after the modification. Structure safety for the modified structure was secured by performing structure analysis. To analysis stress and deformation of aircraft structure, we developed finite element model and verified it by using hand calculation method. We confirmed the safety of the modified structure through the final structural integrity analysis.

Nonlinear Fracture Analysis of Polymer-Impregnated Concrete Flextural Members (폴리머침투콘크리트 휨부재의 비선형 파괴해석)

  • 변근주;이상민;유동우;김태진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.202-207
    • /
    • 1992
  • The objective of this study is to develop analytical techniques of polymer impregnated concrete flexural members for its proper applications. crystalline methylmethacrylate(MMA) is chosen as a monomer of polymer impregnants, On the basis of members. fracture toughness, fracture energy , critical crack width, and tension softening relations near crack tip are formulated in terms of member depth, initial notch length and the flexural strength of normal concrete. The structural analysis rocedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. It is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

  • PDF

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong-Min;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.25-32
    • /
    • 2002
  • Structural and dynamic analyses of inducer and impeller for an oxidizer turbopump are peformed to investigate the safety level of strength and vibration at a design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three-dimensional Finite Element Method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances are sufficient enough for safe operation within the requited life cycle.

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong Min;Kim, Jinhan;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.271-278
    • /
    • 2001
  • Structural and dynamic analyses of inducer and impeller for a oxidizer turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three dimensional finite element method(FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances m sufficient enough to be operated safely within the required life cycle.

  • PDF

Probabilistic capacity spectrum method considering soil-structure interaction effects (지반-구조물 상호작용 효과를 고려한 확률론적 역량스펙트럼법)

  • Nocete, Chari Fe M.;Kim, Doo-Kie;Kim, Dong-Hyawn;Cho, Sung-Gook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.65-70
    • /
    • 2008
  • The capacity spectrum method (CSM) is a deterministic seismic analysis approach wherein the expected seismic response of a structure is established as the intersection of the demand and capacity curves. Recently, there are a few studies about a probabilistic CSM where uncertainties in design factors such as material properties, loads, and ground motion are being considered. However, researches show that soil-structure interaction also affects the seismic responses of structures. Thus, their uncertainties should also be taken into account. Therefore, this paper presents a probabilistic approach of using the CSM for seismic analysis considering uncertainties in soil properties. For application, a reinforced concrete bridge column structure is employed as a test model. Considering the randomness of the various design parameters, the structure's probability of failure is obtained. Monte Carlo importance sampling is used as the tool to assess the structure's reliability when subjected to earthquakes. In this study, probabilistic CSM with and without consideration of soil uncertainties are compared and analyzed. Results show that the analysis considering soil structure interaction yields to a greater probability of failure, and thus can lead to a more conservative structural design.

  • PDF

Fabrication, Durability and Structural Characteristics of Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 제작성, 내구성 및 구조거동평가)

  • Lee Sung-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.427-434
    • /
    • 2005
  • In this study, to develop composite bridge deck of many advantages such as light weight, high strength, corrosion resistance and high durability, profile design, laminate design and finite element analysis were carried out. In the analysis, 5-girder single span bridge with composite deck was considered. Deflection serviceability, failure criteria and web buckling were evaluated. Composite deck of designed profile was fabricated with pultrusion process. The coupon tests were conducted for the fabricated deck and the results were described.

Structural Safety Analysis and Reinforcement for Weak Area of the Coal Silo Tunnel using Finite Elements Analysis (유한요소해석을 이용한 Coal Silo Tunnel 취약부위의 구조안전성 분석 및 구조보강)

  • Lee, Hyun-Woo;Jung, Sung-Yuen;Song, Se-Arm;Kim, Min-Soo;Kim, Jin-Hyung;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.461-468
    • /
    • 2012
  • Silo is a warehouse for storing granular materials such as grain, cement, petroleum compound and coal. When compared to other warehouses, the silo can use space efficiently. The coal silo are consists of silo, tunnel and extractor. Of these, there are not sufficient study and design data on tunnel. It depends heavily upon trial and error method by field engineers with several years of experience. Recently, silos are constructed with a large size, and tunnel becomes to be in danger of severe cracking and collapse by a huge load of coal. So it is necessary to analyze structural safety for tunnel. In this study, the problems of the tunnel are analyzed by field data, and reinforcement of structural weak area using FE analysis has been carried out to design the tunnel satisfying structural safety. From FE Analysis, the reinforced model which does not exceed the yield strength of the material has been proposed.