• Title/Summary/Keyword: structural analysis and design

Search Result 6,891, Processing Time 0.036 seconds

Portable Amperometric Glucose Detection based on NiS/CuS Nanorods Integrated with a Smartphone Device

  • Heyu Zhao;Kaige Qu;Haoyong Yin;Ling Wang;Yifan Zheng;Shumin Zhao;Shengji Wu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.252-261
    • /
    • 2023
  • Glucose detection is particularly important for clinical diagnosis and personal prevention and control. Herein, the smartphone-based amperometric glucose sensors were constructed using the NiS/CuS nanorods (NRs) as sensing electrodes. The NiS/CuS NRs were prepared through a facile hydrothermal process accompanied by the subsequent vulcanization treatment. The morphological and structural properties of NiS/CuS NRs were characterized with SEM, EDS, XRD, and XPS. Electrochemical measurements including cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy display that NiS/CuS NRs can act as highly efficient electrocatalyst for glucose detection. The NiS/CuS NRs electrodes present a wide detection range of 1-8000 µM for glucose sensing with the sensitivity of 956.38 µA·mM-1·cm-2. The detection limit was 0.35 µM (S/N=3). When employed in smartphone-based glucose sensing device, they also display a high sensitivity of 738.09 µA·mM-1·cm-2 and low detection limit of 1.67 µM. Moreover, the smartphone-based glucose sensing device also presents favorable feasibility in determination of glucose in serum samples with the recoveries ranging between 99.5 and 105.8%. The results may provide a promising viewpoint to design other new portable glucose sensors.

A Study on the Organizational Development for Intelligent Technology Acceptance in ESG Management (ESG 경영을 위한 지능형 기술을 수용하는 조직개발 연구)

  • Jung Byoungho;Joo Hyungkun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • The purpose of this study is to empirically confirm what is an important variable of organizational change by intelligent technology acceptance and whether is a difference in important variables in the organization level of acceptance of intelligent technology. Recently, business models using intelligent technologies such as chat-bots, self-driving cars, credit-prevention fraud, face recognition, and health-care are emerging. External situation factors such as artificial intelligence, big data, COVID-19, and the ESG management are changing the direction of a company's management strategy. This research method established a structural equation model. As a result of the analysis, we found that the leadership, organizational culture, and organizational cooperation variables had a positive effect on human resource development variables. Human resource development found a positive effect on the performance of intelligent technology. In addition, we found the independent variables of leadership, organizational culture, and organizational cooperation had partial mediating effects on the performance of intelligent technology. Each group of levels of intelligent technology found performance differences. The organizational culture variables appeared as important variables in all groups. On the other hand, the leadership variable appeared as an important variable in the middle and lower groups of intelligent technology. The theoretical background of this study is that the business theory was updated through artificial intelligence and intelligent technology theory. As a practical implication, the organization adopting intelligent technology is necessary to prepare a systematic plan for organizational culture change.

A Study on the Factors Affecting the Success of Intelligent Public Service: Information System Success Model Perspective (판별시스템 중심의 지능형공공서비스 성공에 영향을 미치는 요인 연구: 정보시스템성공모형을 중심으로)

  • Kim, Jung Yeon;Lee, Kyoung Su;Kwon, Oh Byung
    • The Journal of Information Systems
    • /
    • v.32 no.1
    • /
    • pp.109-146
    • /
    • 2023
  • Purpose With Intelligent public service (IPS), it is possible to automate the quality of civil affairs, provide customized services for citizens, and provide timely public services. However, empirical studies on factors for the successful use of IPS are still insufficient. Hence, the purpose of this study is to empirically analyze the factors that affect the success of IPS with classification function. ISSM (Information System Success Model) is considered as the underlying research model, and how the algorithm quality, data quality, and environmental quality of the discrimination system affect the relationship between utilization intentions is analyzed. Design/methodology/approach In this study, a survey was conducted targeting users using IPS. After giving them a preliminary explanation of the intelligent public service centered on the discrimination system, they briefly experienced two types of IPS currently being used in the public sector. Structural model analysis was conducted using Smart-PLS 4.0 with a total of 415 valid samples. Findings First, it was confirmed that algorithm quality and data quality had a significant positive (+) effect on information quality and system quality. Second, it was confirmed that information quality, system quality, and environmental quality had a positive (+) effect on the use of IPS. Thirdly, it was confirmed that the use of IPS had a positive (+) effect on the net profit for the use of IPS. In addition, the moderating effect of the degree of knowledge on AI, the perceived accuracy of discriminative experience and IPS, and the user was analyzed. The results suggest that ISSM and TOE framework can expand the understanding of the success of IPS.

Performance Impact Analysis of Resistance Elements in Field-Effect Transistors Utilizing 2D Channel Materials (2차원 채널 물질을 활용한 전계효과 트랜지스터의 저항 요소 분석)

  • TaeYeong Hong;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.83-87
    • /
    • 2023
  • In the field of electronics and semiconductor technology, innovative semiconductor material research to replace Si is actively ongoing. However, while research on alternative materials is underway, there is a significant lack of studies regarding the relationship between 2D materials used as channels in transistors, especially parasitic resistance, and RF (radio frequency) applications. This study systematically analyzes the impact on electrical performance with a focus on various transistor structures to address this gap. The research results confirm that access resistance and contact resistance act as major factors contributing to the degradation of semiconductor device performance, particularly when highly scaled down. As the demand for high-frequency RF components continues to grow, establishing guidelines for optimizing component structures and elements to achieve desired RF performance is crucial. This study aims to contribute to this goal by providing structural guidelines that can aid in the design and development of next-generation RF transistors using 2D materials as channels.

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.

Hybrid Control System Using On-Off Type LQG Algorithm (On-Off 형태의 LQG 알고리즘을 이용한 복합제어 시스템)

  • Jung Hyung-Jo;Yoon Woo-Hyun;Lee In-Won;Park Kyu-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.227-243
    • /
    • 2005
  • This paper presents a hybrid control system combining lead rubber bearings and hydraulic actuators for seismic response control of a cable stayed bridge. Because multiple control devices are operating, a hybrid control system could improve the control performances. However, the overall system robustness may be impacted negatively by additional active control devices. Therefore, a secondary on-off type controller according to the responses of lead rubber bearings is combined with LQG algorithm to improve the controller robustness. Numerical simulation results show that control performances of the hybrid system controlled by an on off type LQG algorithm are improved compared to those of the passive and active control systems and are similar to those of performance oriented hybrid system controlled by a LQG algorithm with the similar peak and normed control forces. Furthermore, it is verified that the hybrid system with an on-off type LQG controller is more robust for stiffness matrix perturbation than conventional hybrid control of system, and there are no signs of instability in the overall system. The proposed control system also maintains the control performance under not only the design earthquakes but also the other earthquakes. Therefore, the hybrid control system using on-off type LQG algorithm could be proposed as an improved control strategy for seismically excited cable-stayed bridges containing many uncertainties.

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

Experimental Verification on the Structural Safety of Cantilever Beam Connected with Post-installed Adhesive Anchor Bolts (부착식 후설치 앵커로 연결된 내민보의 구조 안전성에 대한 실험적 평가)

  • Oh, Hong-Seob;Park, Sung-Rak
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.529-536
    • /
    • 2011
  • Recently, there has been a growing interest in expanded sidewalks for existing bridges. The cantilever beam system applied to expanded sidewalks for existing bridges are connected with the concrete structure by adhesive anchor bolts. However, the extended sidewalks are currently constructed without standardized regulations, which lead to excessive design of the beam spacing and installation and the construction difficulties due to the excessive over-weight. Moreover, there is only limited analysis and experiment data on the post-installed adhesive anchor bolts, so the excessive number of bolts is used for the connection. This paper deals with a method to increase the effectiveness of beam sections and anchor bolts geometry for expanded sidewalk of existing bridge. The study results showed that the failure of cantilever beam connected by adhesive anchor bolts was dominated by bond failure of interface between concrete and bolt. Also, the results indicated the possibilities of improving serviceability as well as safety of the sidewalks by changing of beam section and prestressing the bolts.