• Title/Summary/Keyword: structural analysis and design

Search Result 6,891, Processing Time 0.036 seconds

Investigation on Forced Vibration Behavior of WIG Craft Main Wing Structure Excited by Propulsion System

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.810-812
    • /
    • 2008
  • Previously study on structural design of the main wing of the twenty-seat class WIG(Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs in operation. According to the result of forced vibration analysis, structural design was modified to reduce the vibrations.

  • PDF

Self-Optimizing Structural Design of a Pre-engineered Building System with Nonprismatic Members based on AISC2005 (AISC2005에 기준한 변단면 선설계 건축물시스템의 자동화 최적구조설계)

  • Kim, Yong Seok;Oh, Myoung Ho;Song, Byung Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.193-201
    • /
    • 2009
  • Structural design of most nonprismatic Pre-Engineered Building Systems (PEBS) is performed using optimizing software developed in foreign countries. In this study, a structural optimizing software for the design of 3-D structures of nonprismatic PEBS is developed according to the allowable stress design method of AISC2005 and KBC. Optimizing structural design with nonprismatic members is carried out by repeating the process of structural analysis and member design to minimize the weight of a structure. According to the optimizing design results of 2-D and 3-D structures with nonprismatic members, there are considerable steel savings in designing structures with nonprismatic H-shaped built-up sections rather than with H-shaped rolled sections. When H-shaped built-up sections were used, the weight of the structural steel was reduced when AISC2005 specification rather than AISC1898 was used in the design. It is therefore concluded that utilizing the new AISC2005 specification is safer in preventingweb buckling because the height of a member is designed to be small despite some differences depending on the structural type.

Study on Structural Behavior of Pipe Loops Using CAESAR-II (CAESAR-II를 이용한 파이프 루프의 구조 거동 특성 연구)

  • Park, Chi-Mo;Yoon, Seong-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. The structural design of these pipes mostly relies on the commercial code, CAESAR-II, which was especially developed for the structural analysis of pipes. This study conducted stress analyses of the same pipe unit, including loops, using both CAESAR-II and MSC/NASTRAN, and compared the results to investigate the characteristics of CAESAR-II. A parametric study was then conducted of the various design variables of pipe loops using CAESAR-II to draw some useful information about the structural characteristics of the loops.

Parallel Topology Optimization on Distributed Memory System (분산 메모리 시스템에서의 병렬 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.291-298
    • /
    • 2006
  • A parallelized topology design optimization method is developed on a distributed memory system. The parallelization is based on a domain decomposition method and a boundary communication scheme. For the finite element analysis of structural responses and design sensitivities, the PCG method based on a Krylov iterative scheme is employed. Also a parallelized optimization method of optimality criteria is used to solve large-scale topology optimization problems. Through several numerical examples, the developed method shows efficient and acceptable topology optimization results for the large-scale problems.

  • PDF

Optimum Shape Design of Gearbox Housing for 5MW Wind Turbines (5MW급 풍력발전기용 기어박스 하우징의 형상 최적설계)

  • Jeong, Ki-Yong;Lee, Dae-Yeon;Choi, Eun-Ho;Cho, Jin-Rea;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • The thickness optimization of the gearbox housing for 5MW wind turbine is carried out with the help of the efficient structure analysis model and the approximation model of objective function. Wind turbine gearbox is a complex structural system composed of a number of gear trains, shafts, bearing and gearbox housing, requiring a tremendous number of elements for the structural analysis and design. In this paper, an effective analysis and design model considering the tooth stiffness of helical gears is proposed. It enables to significantly reduce the total element number and the analysis time. Through the numerical optimization of housing thickness making use of the effective gearbox model and the approximate model of objective function, the total weight of the gearbox housing is minimized. It has been observed from the numerical experiment that the approximation model is reliable and the optimization result is acceptable and verified analysis.

Nonlinear Inelastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 비탄성 최적설계)

  • 마상수;김승억
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.145-152
    • /
    • 2003
  • An optimal design method in cooperated with nonlinear inelastic analysis method is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm uses a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used among sections in the database to look for high performance ones. They satisfy the constraint functions and give the lightest weight to the structure. The objective function is set to the total weight of the steel structure and the constraint functions are load-carrying capacities, serviceability, and ductility requirement. Case studies of a three-dimensional frame and a three-dimensional steel arch bridge are presented.

  • PDF

Structural Design of an Upper Control Arm, Considering Static Strength (정강도를 고려한 상부 컨트롤 암의 구조설계)

  • Song, Byoung-Cheol;Park, Han-Seok;Kwon, Young-Min;Kim, Sung-Hwan;Park, Young-Chul;Lee, Kwon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.190-196
    • /
    • 2009
  • This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design and material technologies. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. This study considers the static strength in the optimization process. The inertia relief method for FE analysis is utilized to simulate the static loading conditions. According to the classification of structural optimization, the structural design of a control arm is included in the category of shape optimization. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by ANSYS WORKBENCH and the in-house program, EXCEL-kriging program. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH.

Predicting the maximum lateral load of reinforced concrete columns with traditional machine learning, deep learning, and structural analysis software

  • Pelin Canbay;Sila Avgin;Mehmet M. Kose
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.285-299
    • /
    • 2024
  • Recently, many engineering computations have realized their digital transformation to Machine Learning (ML)-based systems. Predicting the behavior of a structure, which is mainly computed with structural analysis software, is an essential step before construction for efficient structural analysis. Especially in the seismic-based design procedure of the structures, predicting the lateral load capacity of reinforced concrete (RC) columns is a vital factor. In this study, a novel ML-based model is proposed to predict the maximum lateral load capacity of RC columns under varying axial loads or cyclic loadings. The proposed model is generated with a Deep Neural Network (DNN) and compared with traditional ML techniques as well as a popular commercial structural analysis software. In the design and test phases of the proposed model, 319 columns with rectangular and square cross-sections are incorporated. In this study, 33 parameters are used to predict the maximum lateral load capacity of each RC column. While some traditional ML techniques perform better prediction than the compared commercial software, the proposed DNN model provides the best prediction results within the analysis. The experimental results reveal the fact that the performance of the proposed DNN model can definitely be used for other engineering purposes as well.

A Study on Structural Design and Analysis for Composite Main Wing and Horizontal Tail of A Small Scale WIG Vehicle (경량화 복합재 위그선의 주익 및 수평 미익 구조 설계 및 해석에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The present study provides structural design and analysis of main wing and horizontal tail of a small scale WIG(Wing in Ground Effect) vehicle which has been developed as a part of the high speed maritime transportation system for the future of Korea. Weight saving as well as structural stability could be achieved by skin-spar with foam sandwich design and with wide application of carbon/epoxy composite material. A commercial FEM code, NASTRAN, was utilized to confirm the structural safety and stability through sequential design modifications to meet the final design goal. In addition, each wing and the fuselage were fastened together by eight insert bolts with high strength to accomodate easy assembling and disassembling as well as to guarantee a service life longer than 20 years.

Global Acoustic Design Sensitivity Analysis using Direct BEM and Continuum DSA (직접 경계요소법과 연속계 설계민감도 해석법을 이용한 소음 설계 민감도 해석)

  • 왕세명;이제원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.81-87
    • /
    • 1998
  • In this paper, a global acoustic design sensitivity analysis (DSA) of field point pressure with respect to structural sizing design variables is developed. Firstly acoustic sensitivity is formulated and implemented numerically. And it is combined with continuum structural sensitivity to obtain the global acoustic, design sensitivity. For this procedure, GASA (global acoustic design sensitivity analyzer) has been developed. A half scale of automobile cavity model is considered in this paper. In order to confirm accuracy of the results of global acoustic DSA obtained by GASA, it is compared with the result of central finite difference method. In order to reduce computation time, Rayleigh approximated solution is evaluated and compared with the solution which used every nodal velocities. Also the acoustic optimization procedure is performed using design sensitivities. From these numerical studies, it can be shown that global acoustic DSA is a useful tool to improve acoustic problems.

  • PDF