• Title/Summary/Keyword: structural analysis and design

Search Result 6,891, Processing Time 0.041 seconds

Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures (모멘트 - 저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용)

  • 이한선
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.99-109
    • /
    • 1989
  • Through a series of analyses of specific structures it is shown that incremental collapse may be the critical design criterion and that shakedown analysis can be used as a design tool. Using shakedown analysis technique, a nonlinear structural optimization program has been developed. This incorporates: (i) design constraints on elastic stresses and deflections: (ii) constraints for the prevention of incremental collapse and soft story failure: and (iii) the constraint on the fundamental period of structure. A five-step design procedure is proposed by using the program to obtain the optimum design that satisfies all the requirements of comprehensive earthquake-resistant design.

  • PDF

Design Process of Light-weighted Fuel Cell Vehicle Body Frame (경량 연료전지 차체프레임 설계 프로세스)

  • Kim, Ki-Tae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • This paper presents a design process of light-weighted fuel cell vehicle (FCV) frame to meet design target of natural frequency in early design stage. At first, using validated FE model for the current design, thickness optimization was carried out. Next. optimization process, comprised of beam model size optimization, shell model design and shell model thickness optimization, was investigated for two frame types. In addition, in order to ensure hydrogen tanks safety against rear impact load, structural collapse characteristics was estimated for the rear frame model finally produced from the previous optimization process and, with the target of equal collapse characteristics to the current design model, structural modification with small weight increase was studied through static structural collapse analyses. The same attempt was applied to the front side frame. The results explain that the proposed process enables to design light-weighted frames with high structural performance in early stage.

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Structural Design for Performance Improvement of Line Center (라인센터의 성능향상을 위한 구조설계)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Kweon, Hyun-Kyu;Choi, Un-Don;Shon, Jae-Yool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.76-83
    • /
    • 2003
  • Recently, the field of the engineering has been studied about optimum design continuously. Verified data by comparison with simulation and dynamic characteristic analysis enables the design of a machine tool to be modified easily and effectively concerning to the mode shape of the vibration. Especially, BC-500 Line Center has got some problems causing vibration which mainly come from Column and ATC part. So it is necessary to solve those problems by the two kinds of method such as changing structural design and reinforcing with ribs. In this paper, column and ATC part of BC-500 Line center are modified by an optimum design by the analysing method of FEM to avoid vibration. As a result, a more stable machine tool was designed by this simulation as optimum condition.

  • PDF

Integrating drafting with analysis and design of framed steel structures (철골 구조물의 통합 설계 시스템)

  • 김홍국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.127-132
    • /
    • 1991
  • The purpose of this study is to integrate a structural design Process of framed steel structures. It is composed of analysis, design, drafting and construction management. However each step of these works involved with a large amount of data and man hour resources. The aim of this study is to alleviate time consuming efforts mentioned above by integrating the different stage of works. Very successful results have been achieved by setting up a common database in whole process and applying the techniques of knowledge base system.

  • PDF

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

Optimal Design for Weight Reduction of Magnet Over Head Crane by using Taguchi method (다구찌법을 이용한 마그네트 천장크레인의 경량화를 위한 최적설계)

  • 홍도관;최석창;안찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.50-57
    • /
    • 2003
  • In this study, the structural optimal design was applied to the girder of over head crane. The optimization was carried out using ANSYS code fur the deadweight of girder, especially focused on the thickness of its upper, lower, reinforced and side plates. The weight could be reduced up to around 15% with constraints of its deformation, stress and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures fur the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

Platen Weight Reduction Design of Extruder Using Topology Optimization Design (위상최적설계를 활용한 압출기의 플라텐 경량화 설계)

  • Kim, D.Y.;Kim, J.W.;Lee, J.I.;Jo, A.R.;Lee, S.Y.;Jeong, M.S.;Ko, D.C.;Jang, J.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.302-308
    • /
    • 2022
  • In this study, the weight of the platen was reduced using the structural strength analysis and topology optimization design of the extruder by finite element analysis. The main components of the extruder such as the stem and billet, were modeled, and the maximum stress and safety factor were verified through structural strength analysis. Based on the results of the structural strength analysis, the optimal phase that satisfies the limitation given to the design area of the structure and maximizes or minimizes the objective function was obtained through a numerical method. The platen was redesigned with a phase-optimal shape, the weight was reduced by 40% (from the initial weight of 11.1 tons to 6.6 tons), and the maximum stress was 147.49 MPa safety factor of 1.86.

An Analytical Study on Structural Stability Evaluation and Design Improvement of Fire Truck Water Tank for Aircraft Rescue (항공기 구조용 소방차 탱크룸의 구조 안정성 평가 및 설계 개선에 대한 해석적 연구)

  • Hyukjin Kwon;Myeongcheol Kang;Suil Lim;Han wook Kim;Jungki Hong;Ho Lee;Yongson Hwang
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this study, the structural stability of the tank room of an aircraft rescue fire engine is to be studied. The tank room of the aircraft rescue fire engine is filled with fire extinguishing water and chemicals. Fire extinguishing water and chemical are filled to a capacity of about 12.5 tons and are subjected to high stress. The tank room is made of PP material with low yield stress. Structural analysis of the tank room is performed and structural weakness is analyzed. In addition, if a structural problem occurs as a result of structural analysis, an analysis simulation result is presented to derive an improved design and to show the validity of the structural stability of the tank room.

Design and Structural Analysis of Crusher for Useless Wood (폐목재 파쇄기에 대한 설계 및 구조해석)

  • Lee, Jong-Sun;Cho, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.210-214
    • /
    • 2005
  • The objective of this study is design and structural analysis of crusher for useless wood. Structural analysis and modal analysis were effected in ANSYS and the structural safety was examined in search of displacement, stress, strain. There are avoid to resonance phenomenon by motor control.

  • PDF