• Title/Summary/Keyword: structural analysis and design

Search Result 6,891, Processing Time 0.043 seconds

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

New generation software of structural analysis and design optimization--JIFEX

  • Gu, Yuanxian;Zhang, Hongwu;Guan, Zhenqun;Kang, Zhan;Li, Yunpeng;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.589-599
    • /
    • 1999
  • This paper presents the development and applications of the software package JIFEX, a new finite element system which can be used for structural analysis and optimum design by the modern computer hardware and software technologies such as MS Windows95/NT and Pentium PC platforms. The complete system of JIFEX is programmed with $C/C^{++}$ language to make full use of advanced facilities of MS Windows95/NT. In the system, the finite element data pre-processing, based on the most popular CAD package AutoCAD (R13, R14), has been implemented, so that the finite element modeling could be integrated with geometric modeling of CAD. The system not only has interactive graphics facility for data post-processing, but also realizes the real-time computing visualization by means of the Dynamic Data Exchange (DDE) technique. Running on the Pentium computers, JIFEX can solve large-scale finite element analysis problems such as the ones with more than 60000 nodes in the finite element model.

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Structural Design of Door Assembly to Apply Tailor Welded Blanks Technique (합체박판 성형기법의 적용을 위한 자동차 도어의 구조 설계)

  • 황우석;이덕영;하명수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.228-233
    • /
    • 2002
  • TWB(Tailor Welded Blanks) is one of the recent techniques to reduce the weight and cost of the body members. To apply the TWB technique, we must decide the position of the welding line and the thickness of the welded blanks. Although many researchers have tried to check the formability of welded blanks, there are not so many researches from the structural point of view. In this paper, the TWB technique is applied to combine the door inner panel and the hinge face panel into one piece. The finite element structural analysis of the door assembly leads to the final design of the tailor welded door inner panel, which shows the mass reduction of 1.08kg without the sacrifice of the structural stiffness. The structural stiffness analysis includes the frame stiffness analysis, the belt line stiffness analysis, the door sagging analysis and the vibration analysis.

The Optimum Design of Magnet Over Head Crane and the Sensitivity Analysis for Orthogonal Array (마그네트 천장크레인의 최적설계와 직교배열을 이용한 민감도 분석)

  • 노영희;홍도관;최석창;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.786-790
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

  • PDF

Evaluation of Stiffness Ratio of Wooden Mortise and Tenon Joint on Vertical Loading (수직 하중에 따른 목재 짜맞춤 접합부의 강성도 평가)

  • Park, Chun-Young;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.290-297
    • /
    • 2012
  • Recently, interest in wooden construction have been growing by increasing needs and demands for eco-friendly and traditional wooden building(Hanok). Especially, Hanok has the technical development in manufacturing the mortise-tenon joint without fasteners(precut), so it could be called to modernization, industrialization and popularization. But the structural design and analysis of the structure were not regulated and had the difficulty to consider the variation of wooden member and to conduct the difficulty in the structural analysis and the design of the joint. In this study, the stiffness ratio of wooden mortise and tenon joint was evaluated according to the vertical loading, lintel and loading speed. The joint was distinguished in semi-rigid joint regardless of their factors. The stiffness ratio was 0.40 in vertical loading, 0.50 without vertical loading and 0.44 in horizontal loading with high speed. This study would be utilized to the structural analysis and design with structural analysis and design program.

  • PDF

Optimum design of cable-stayed bridges

  • Long, Wenyi;Troitsky, Michael S.;Zielinski, Zenon A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.241-257
    • /
    • 1999
  • This paper presents a procedure to minimize the cost of materials of cable-stayed bridges with composite box girder and concrete tower. Two sets of iterations are included in the proposed procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The second set of iteration performs the optimization process. The design is formulated as a general mathematical problem with the cost of the bridge as the objective function and bending forces, shear forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function method is used in the optimization process. The limit states design method is used to determine the load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity is verified by several practical-sized designs.

A Structural Analysis of the Complex Implements of an Agricultural Tractor using Reverse Design (역설계를 통한 트랙터 복합작업기 강도분석)

  • Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.82-89
    • /
    • 2019
  • This study is a structural analysis of the major components of the implements for an agricultural tractor. To develop an unpowered high-speed implement of an agricultural tractor, the modeling and analysis of the benchmarking product was calculated using 3D scanning and reverse design technologies. The tractive load was calculated using the powertrain efficiencies and soil-propelling force, which were estimated by analyzing the main frame, disc, frames, and chisel plow for the axial loading condition. The final goal of this research is to establish the design parameters and assembly technology for securing disc harrow structures and durability of life. This information will be used to analyze the new model design for domestic consumption.

Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures (모멘트-저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용)

  • 이한선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.51-58
    • /
    • 1989
  • Through a series of analyses of specific structures it is shown that incremental collapse may be the critical design criterion and that shakedown analysis can be used as a design tool. Using shakedown analysis technique, a nonlinear structural optimization program has been developed. This incorporates : (ⅰ) design constraints on elastic stresses and deflections ; (ⅱ) constraints for the prevention of incremental collapse and soft story failure ; and (ⅲ) the constraint on the fundamental period of structure. A five-step design procedure is proposed by using this program to obtain the optimum design that satisfies all the requirements of comprehensive earthquake-resistant design.

  • PDF