• Title/Summary/Keyword: structural analys

Search Result 3, Processing Time 0.018 seconds

Structural and Molecular Characterization of Extracellular Polysaccharides Produced by a New Fungal Strain, Trichoderma erinaceum DG-312

  • JOO JI-HOON;YUN JONG-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1250-1257
    • /
    • 2005
  • Two groups of exopolysaccharides (designated as Fr-I EPS and Fr-II EPS) were isolated from the culture filtrate of new fungal strain Trichoderma erinaceum DG-312 by Sepharose CL-6B chromatography. The structures of the exopolysaccharides were investigated using gas chromatography (GC), Fourier transform-infrared (FT-IR) spectroscopy, GCMS analysis, and NMR. GC analysis indicated that Fr-I EPS was composed of mainly mannose ($78.9\%$) and galactose ($21.1\%$), whereas Fr-II EPS contained mannose ($68.4\%$), galactose ($26.2\%$), and glucose ($5.4\%$). In the anomeric region ($950-700cm_{-1}$) of the FT-IR spectrum, both EPSs exhibited obvious characteristic absorption of $810\;cm_{-1}$, indicating the existence of mannose. The spectra of $\alpha-and\;\beta$-configurations were assigned at 880 and $914\;cm_{-1}$, respectively. The results of GC-MS analyses confirmed that both EPSs were complex heteropolysaccharides with a ($1{\rightarrow}3$)-linked mannan backbone. The C-1 region that appeared in the $^{13}C-NMR$ spectra of these EPSs indicated a typical anomeric carbon signal. The Fr-I EPS showed two anomeric carbon signals at 102.6 and 99.6 ppm, whereas the Fr-II EPS displayed four anomeric carbon signals at 102.5, 99.6, 98.5, and 94.3 ppm. The molecular characteristics of the EPSs were further investigated using a size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS) system. The SEC/MALLS system revealed that the average molar masses of the EPSs were $6.592{\times}10^{4}$ (Fr-I EPS) and $1.920{\times}10^{4}$ (Fr-II EPS) g/mol, and the molecular conformation of both EPSs in aqueous solution was random coils.

Study of Crack Propagation and Absorbed Energy in Heat Affected Zone Using a Finite Element Method (유한요소법을 이용한 용접열영향부의 균열진전 및 샤르피 흡수에너지 연구)

  • Jang, Yun-Chan;Lee, Young-Seog
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.541-548
    • /
    • 2009
  • In this study, Charpy impact test and numerical studies were performed to examine the effects of failure behavior and energy absorption on the notch position. For this purpose, carbon steel plate(SA-516 Gr. 70) with thickness of 25mm usually used for pressure vessel was welded by SMAW(Shielded Metal-Arc Welding)method and specimens were fabricated from the welded plate. The Charpy impact tests were then performed with specimens having different notch positions varying within HAZ. A series of three-dimensional FE analysis which simulates the Charpy test and crack propagation are carried out as well. We divided HAZ into two, three and four regions to apply mechanical properties of HAZ to FE-analys. Results reveal that the absorbed energies during impact test depend significantly on the notch position. To obtain the results of reliability, HAZ should be divided into at least three regions.