• Title/Summary/Keyword: structural acceleration

Search Result 1,111, Processing Time 0.025 seconds

Evaluation of the Dynamic Behavior of Inclined Tripod Micropiles Using Dynamic Centrifuge Test (원심모형실험을 이용한 그룹 삼축 마이크로파일의 동적거동 평가)

  • Kim, Yoon-Ah;Kwon, Tae-Hyuk;Kim, Jongkwan;Han, Jin-Tae;Kim, Jae-Hyun;An, Sung-Yul
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.93-102
    • /
    • 2023
  • Despite recent modifications to building structural standards emphasizing the seismic stability of building foundations, the current design focus remains solely on vertical support, resulting in insufficient consideration of horizontal loads during earthquakes. In this study, we evaluated the dynamic behavior of inclined tripod micropiles (ITMP), which provide additional seismic resistance against horizontal and vertical loads during earthquakes. A comparison of the dynamic characteristics, such as acceleration, displacement, bending moment, and axial force, of ITMP with a 15° installation angle and normal vertical micropiles with a 0° installation angle was performed using dynamic centrifuge model tests. Results show that under moderate seismic loads, the proposed ITMP exhibited lower acceleration responses than the vertical micropiles. However, when subjected to a long-period strong seismic excitation, such as sine (2 Hz), ITMP showed greater responses than the vertical micropiles in terms of acceleration and settlement. These results indicate that the use of ITMP reduces the amplif ication of short-period (high-f requency) contents compared with the use of vertical micropiles. Therefore, ITMP can be used to enhance seismic performance of structures.

Bridge Safety Determination Edge AI Model Based on Acceleration Data (가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델)

  • Jinhyo Park;Yong-Geun Hong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • Bridges crack and become damaged due to age and external factors such as earthquakes, lack of maintenance, and weather conditions. With the number of aging bridge on the rise, lack of maintenance can lead to a decrease in safety, resulting in structural defects and collapse. To prevent these problems and reduce maintenance costs, a system that can monitor the condition of bridge and respond quickly is needed. To this end, existing research has proposed artificial intelligence model that use sensor data to identify the location and extent of cracks. However, existing research does not use data from actual bridge to determine the performance of the model, but rather creates the shape of the bridge through simulation to acquire data and use it for training, which does not reflect the actual bridge environment. In this paper, we propose a bridge safety determination edge AI model that detects bridge abnormalities based on artificial intelligence by utilizing acceleration data from bridge occurring in the field. To this end, we newly defined filtering rules for extracting valid data from acceleration data and constructed a model to apply them. We also evaluated the performance of the proposed bridge safety determination edge AI model based on data collected in the field. The results showed that the F1-Score was up to 0.9565, confirming that it is possible to determine safety using data from real bridge, and that rules that generate similar data patterns to real impact data perform better.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure (3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석)

  • Lim, Hyun-Kyu;Lee, Young-Geun;Kang, Jun Won;Chi, Ho-Seok;Cho, Ho-Hyun;Kim, Moon-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper presents the seismic performance of a geometrically unsymmetrical reinforced concrete building considering torsional effect and material nonlinearity of concrete and steel. The reinforced concrete building is a structure for seismic performance evaluation in the SMART-2013 international benchmark program. Nonlinear constitutive models for concrete and steel were constructed, and their numerical performance was demonstrated by various local tests. Modal analysis showed that the first three natural frequencies and mode shapes were close to the experimental results from the SMART-2013 program. In the time history analysis for low-intensity seismic loadings, displacement and acceleration responses at sampling points were similar to the experimental results. In the end, nonlinear time history analysis was conducted for Northridge earthquake to predict the behavior of the reinforced concrete structure under high-intensity seismic loadings.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.

Derivation of Dynamic Characteristic Values for Multi-degree-of-freedom Frame Structures based on Frequency Response Function(FRF) (주파수응답함수 기반 다자유도 골조 구조물의 동특성치 도출 및 구조모델링 적용 )

  • So-Yeon Kim;Min-Young Kim;Seung-Jae Lee;Kyoung-Kyu Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • In the seismic design of structures, seismic forces are calculated based on structural models and analysis. In order to accurately address the dynamic characteristics of the actual structure in the structural model, calibration based on actual measurements is required. In this study, a 4-story frame test specimen was manufactured to simulate frame building, accelerometers were attached at each floor, and 1-axis shaking table test was performed. The natural period of the specimen was similar to that of the actual 4 story frame building, and the columns were designed to behave with double-curvature having the infinite stiffness of the horizontal members. To investigate the effects seismic waves characteristics, historical and artificial excitations with various frequencies and acceleration magnitudes were applied. The natural frequencies, damping ratios, and mode shapes were obtained using frequency response functions obtained from dynamic response signals, and the mode vector deviations according to the input seismic waves were verified using the Mode assurance criterion (MAC). In addition, the damping ratios obtained from the vibration tests were applied to the structural model, and the method with refined dynamic characteristics was validated by comparing the analysis results with the experimental data.

Retrofit Yield Spectra-a practical device in seismic rehabilitation

  • Thermou, G.E.;Elnashai, A.S.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.141-168
    • /
    • 2012
  • The Retrofit Yield Spectrum (RYS) is a new spectrum-based device that relates seismic demand of a retrofitted structure with the fundamental design parameters of the retrofit. This is obtained from superposition of Yield Point Spectra with design charts that summarize in pertinent spectrum-compatible coordinates the attributes of a number of alternative retrofit scenarios. Therefore, once the requirements for upgrading a given structure have been determined, the RYS enable direct insight of the sensitivity of the seismic response of the upgraded structure to the preliminary design decisions made while establishing the retrofit plan. By virtue of their spectrum-based origin, RYS are derived with reference to a single mode of structural vibration; a primary objective is to control the contribution of this mode in the retrofit design so as to produce a desirable distribution of damage at the ultimate limit state by removing soft storey formations and engaging the maximum number of structural members in deformation, in response to the input motion. Calculations are performed with reference to the yield-point, where secant stiffness is proportional to the flexural strength of reinforced concrete members. Derivation and use of the Retrofit Yield Spectra (RYS) refers to the seismic demand expressed either in terms of spectral acceleration, spectral displacement or interstory drift, at yield of the first storey. A reinforced concrete building that has been tested in full scale to a sequence of simulated earthquake excitations is used in the paper as a demonstration case study to examine the effectiveness of the proposed methodology.

Development of Industrial High-Speed Transfer Parallel Robot (산업용 고속 이송 병렬 로봇 개발)

  • Kim, Byung In;Kyung, Jin Ho;Do, Hyun Min;Jo, Sang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1043-1050
    • /
    • 2013
  • Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced.

Cable Tension Force Management Using Vibration Method at Cable Stayed Bridge Construction Stages (진동법을 이용한 사장교 시공단계별 케이블 장력관리)

  • Park, Yeon-Soo;Cheon, Dong-Ho;Cheon, Yang-Bae;Kang, Kyoung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 2005
  • Design and construction of long-span bridge are recently increasing by development of computer technology. Specially, cable stayed bridge and suspension bridge having cable component are representative of long-span bridge may do. Therefore, this paper a present a methodology for cable tension force monitoring in cable-stayed bridge under construction using acceleration data acquired by the vibration method. To improve accuracy construction, all stay cables are measured, according to 4-step construction stage and change of temperature.

Nonlinear Time History Analysis of Long Span Cable-Stayed Bridge Considering Multi-Support Excitation (다지점 가진을 고려한 장경간 사장교의 비선형시간이력해석)

  • Kim, Jin-Il;Ha, Su-Bok;Sung, Dae-Jung;Kim, Mun-Young;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.655-662
    • /
    • 2011
  • For analyzing seismic performance of long-span bridge for multi-support excitation and preparing technically and efficiently for a variety of design demands, the new module on multiple excitation was built in a reliable non-linear analysis program(RCAHEST) by using Influence Line Method, and the study on structures was performed previously. Also, the result of the analysis through RCAHEST was compared and verified with commercial finite element analysis program SAP2000 by using the feature of Multi-Support Excitation. From these results, nonlinear time history analysis considering multi-support excitation was studied after designing FE model of Incheon cable-stayed bridge. It was proved that the maximum response of horizontal displacement decreased as the time delay was increasing at all nodes of bridge. And then the serviceability of analysis model was evaluated by performing ultimate analysis under changes in maximum acceleration of seismic load data.