• Title/Summary/Keyword: structural acceleration

Search Result 1,111, Processing Time 0.034 seconds

Experimental study on vibration serviceability of cold-formed thin-walled steel floor

  • Bin Chen;Liang Cao;Faming Lu;Y. Frank Chen
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.577-589
    • /
    • 2023
  • In this study, on-site testing was carried out to investigate the vibration performance of a cold-formed thin-walled steel floor system. Ambient vibration, walking excitation (single and double persons), and impulsive excitation (heel-drop and jumping) were considered to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes) and vertical acceleration response. Meanwhile, to discuss the influence of cement fiberboard on structural vibration, the primary vibration parameters were compared between the systems with and without the installation of cement fiberboard. Based on the experimental analysis, the cold-formed thin-walled steel floor possesses high frequency (> 10 Hz) and damping (> 2%); the installed cement fiberboard mainly increases the mass of floor system without effectively increasing the floor stiffness and may reduce the effects of primary vibration parameters on acceleration response; and the human-structure interaction should be considered when analyzing the vibration serviceability. The comparison of the experimental results with those in the AISC Design Guide indicates that the cold-formed thin-walled steel floor exhibits acceptable vibration serviceability. A crest factor 𝛽rp (ratio of peak to root-mean-square accelerations) is proposed to determine the root-mean-square acceleration for convenience.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Study on Transient Structural Load Analysis of Aircraft Suspension Equipment (항공기용 서스펜션 장비의 천이구조하중해석에 대한 연구)

  • Cha, Jinhyun;Chung, Sangjun;Choi, Kwanho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-30
    • /
    • 2015
  • In this study, a transient structural load analysis system was constructed to calculate the applied load on the suspension equipment corresponding to the aircraft flight conditions based on military specifications. Aircraft flight data (altitude, velocity, acceleration, angle of attack and etc. at aircraft center of gravity) were used as input parameters and the calculated load of the suspension equipment at wings on the left and right side was printed out for the structural load analysis. As a calculation procedure, first of all, load analysis was carried out at the center of gravity of the external store, Secondly, a trial reaction force analysis was conducted on hook and swaybrace of suspension equipment. All procedure of calculations was programed to analyze the structural load automatically. To verify the numerical results, structural load analysis using the experimental flight data was performed.

Design and implementation of a SHM system for a heritage timber building

  • Yang, Qingshan;Wang, Juan;Kim, Sunjoong;Chen, Huihui;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.561-576
    • /
    • 2022
  • Heritage timber structures represent the history and culture of a nation. These structures have been inherited from previous generations; however, they inevitably exhibit deterioration over time, potentially leading to structural deficiencies. Structural Health Monitoring (SHM) offers the potential to assess operational anomalies, deterioration, and damage through processing and analysis of data collected from transducers and sensors mounted on the structure. This paper reports on the design and implementation of a long-term SHM system on the Feiyun Wooden Pavilion in China, a three-story timber building built more than 500 years ago. The principles and features of the design and implementation of SHM systems for heritage timber buildings are systematically discussed. In total, 104 sensors of 6 different types are deployed on the structure to monitor the environmental effects and structural responses, including air temperature and humidity, wind speed and direction, structural temperatures, strain, inclination, and acceleration. In addition, integrated data acquisition and transmission subsystem using a newly developed software platform are implemented. Selected preliminary statistical and correlation analysis using one year of monitoring data are presented to demonstrate the condition assessment capability of the system based on the monitoring data.

Estimation of track irregularity using NARX neural network (NARX 신경망을 이용한 철도 궤도틀림 추정)

  • Kim, Man-Cheol;Choi, Bai-Sung;Kim, Yu-Hee;Shin, Soob-Ong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.275-280
    • /
    • 2011
  • Due to high-speed of trains, the track deformation increases rapidly and may lead to track irregularities causing the track stability problem. To secure the track stability, the continual inspection on track irregularities is required. The paper presents a methodology for identifying track irregularity using the NARX neural network considering non-linearity in the train structural system. A simulation study has been carried out to examine the proposed method. Acceleration time history data measured at a bogie were re-sampled to every 0.25m track irregularity. In the simulation study, two sets of measured data were simulated. The second data set was obtained by a train with 10% more mass than the one for the first data set. The first set of simulated data was used to train the series-parallel mode of NARX neural network. Then, the track irregularities at the second time period are identified by using the measured acceleration data. The closeness of the identified track irregularity to the actual one is evaluated by PSD and RMSE.

  • PDF

Seismic analysis of arch dams including dam-reservoir interaction via a continuum damage model

  • Karaton, M.;Calayir, Y.;Bayraktar, A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.351-370
    • /
    • 2006
  • In this study, the earthquake damage response of the concrete arch dams was investigated including dam-reservoir interaction. A continuum damage model which is a second-order tensor and includes the strain softening behavior was selected for the concrete material. Fluid-structure interaction problem was modeled by Lagrangian approach. Sommerfeld radiation condition was applied to the truncated boundary of reservoir. The improved form of the HHT-${\alpha}$ time integration algorithm was used in the solution of the equations of motion. The arch dam Type 5 was selected for numerical application. For the dynamic input, acceleration records of the 10 December 1967 Koyna earthquake were chosen. These records were scaled with earthquake acceleration scale factor (EASF) and then used in the analyses. Solutions were obtained for empty and full reservoir cases. The effects of EASF and damping ratio on the response of the dam were studied.

Disturbance Compensation Control Design far 2-DOF Gun Stabilization System with Gear Stiffness by Using FXLMS Algorithm (기어강성을 갖는 2-자유도 포신 안정화시스템에서 FXLMS 알고리즘을 이용한 외란 보상 제어기 설계)

  • Lim, Jae-Keun;Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.488-493
    • /
    • 2005
  • In gun stabilization systems, the torque comes from the unbalance mass of gun and the base acceleration is an important source of disturbance which degrades stabilization performance. Fatigue of gear train is another important factor affecting structural safety problems. In this paper, a feedback control gain is designed by optimal control weighting to difference between motor and gun velocity, and a feedforward controller using FXLMS algorithm is adopted to investigate those problems. Experimental results show that the feedforward compensator based on FXLMS can reduce the disturbance effects. The directional convergence property according to initial conditions of the FXLMS is also shown through experiments.

  • PDF

Sensitivity analysis for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.309-323
    • /
    • 2006
  • In this paper, seismic response of a free-standing ship located in a dry dock and supported by an arrangement of n keel blocks due to base excitation is addressed. Formulation of the problem including derivation of governing equations in various modes of motion as well as transition conditions from one mode to another is given in Moghaddasi and Bargi (2006) by same authors. On the base of numerical solution for presented formulation, several numbers of analyses are conducted to study sensitivity of system's responses to some major contributing parameters. These parameters include friction coefficients between contacting surfaces, block dimensions, peak ground acceleration, and the magnitude of vertical ground acceleration. Finally, performance of a system with usual parameters normally encountered in design is investigated.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.