• 제목/요약/키워드: structural acceleration

Search Result 1,111, Processing Time 0.037 seconds

Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness (동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험)

  • Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.217-225
    • /
    • 2007
  • This paper proposes the real-time hybrid shaking table testing methods to simulate the dynamic behavior of a soil-structure interaction system with dynamic soil stiffness by using only a structure model as the physical specimen and verifies their effectiveness for experimental implementation. Experimental methodologies proposed in this paper adopt such a way that absolute accelerations measured from the superstructure and shaking table are feedback to the shaking table controller, and then the shaking table is driven by the calculated motion of the absolute acceleration (acceleration feedback method) or the absolute velocity (velocity feedback method) of foundation that is required to simulate the dynamic behavior of a whole soil-structure interaction system. The shaking table test is implemented by reflecting the dynamic soil stiffness, which are differently approximated from the theoretical one depending on the feedback methods, on the shaking table controller to calculate soil part. The effectiveness of the proposed experimental methods is verified by comparing the response measured from the test on a foundation-fixed structural model and that obtained from the experiment of a soil-interaction system under the consideration in this paper and by matching the dynamic soil stiffness reflected on the shaking table controller with that identified using the experimentally measured data.

Analysis of Measured Acceleration Data to Obtain Dynamic Characteristics of Bridges (교량의 동적 특성 분석을 위한 가속도 데이터의 해석)

  • 이선구;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.111-121
    • /
    • 1995
  • In Extracting the dynamic parameters for estimating the load carrying capacity and integrity of bridges, both the instrumentation and the processing the data plays important role . When the fixed point can not be secured, it is difficult and expensive to measure dynamic displacements. Even if the displacement is obtained through the integration of the acceleration data, the results can be quite different from the real behavior, because the main frequency contents can be leaked during discretized data processing. The instrumentation is used for measurements, and every measurement involves error and uncertainty, such as systematic, conformance, environmental, observational, sampling, and ranmom error. Systematic and conformance error can be remedied through the proper sellection and installation of the instruments, but sampling and random errors could not have been corrected properly and it becomes the limitation for using acceleration data. In this paper, the errors which can be occurred in numerical processing of dynamic data are referred, and the method to sellect proper sampling rate for the structural frequency range are proposed. Using the proposed method, the displacement response of the structures can be economically obtained from the measured acceleration record, and this procedure can be used properly to estimate the integrity of the bridges and infrastructures subjected to dynamic loads.

  • PDF

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China

  • Lu, Xilin;Ding, Kun;Shi, Weixing;Weng, Dagen
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.607-621
    • /
    • 2012
  • The Expo Culture Centre is one of the permanent buildings at the World Expo 2010 in Shanghai, China. The main structure has an oval shape and consists of 36 radial cantilever steel trusses with different lengths and inner frames made of concrete-filled rectangular steel tube members. Tuned mass dampers are used to reduce the excessive vibrations of the sixth floor that are caused by human-induced resonance. A three-dimensional analytical model of the system is developed, and its main characteristics are established. A series of field tests are performed on the structure, and the test results show that the vertical vibration frequencies of most structural cantilevers are between 2.5 Hz and 3.5 Hz, which falls in the range of human-induced vibration. Twelve pairs of tuned mass dampers weighing 115 tons total were installed in the structure to suppress the vibration response of the system. These mass dampers were tuned to the vertical vibration frequency of the structure, which had the highest possibility of excitation. Test data obtained after the installation of the tuned mass dampers are used to evaluate their effectiveness for the reduction of the vibration acceleration. An analytical model of the structure is calibrated according to the measured dynamic characteristics. An analysis of the modified model is performed and the results show that when people walk normally, the structural vibration was low and the tuned mass dampers have no effect, but when people run at the structural vibration frequency, the tuned mass dampers can reduce the floor vibration acceleration by approximately 15%.

A Study on the Structural Design and Analysis of Air Intake of Unmanned Aerial Vehicles Applied to Composite Materials (무인 항공기 공기 흡입구의 복합재 적용 구조 설계 및 해석 연구)

  • Choi, Heeju;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-85
    • /
    • 2022
  • In this study, we conducted a structural design and analysis of air intake of aircraft engine using composite materials. First, an investigation on structural design requirement of target structure was carried out. The distributed pressure load and acceleration condition was applied to structural design. To evaluate the structural design result, finite element analysis was carried out. The stress, deflection and buckling analysis for structural safety evaluation was performed. Finally, it was confirmed that the air intake through structural analysis is safety.

Hybrid Damage Monitoring Technique for Plate Girder Bridges using Acceleration-Impedance Signatures (판형교의 가속도-임피던스 신호를 이용한 하이브리드 손상 모니터링 기법)

  • Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Kim, Jeong-Tae;Park, Gyu-Hae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-202
    • /
    • 2008
  • In this paper, a hybrid vibration-impedance approaches is newly proposed to detect the occurrence of damage, the location of damage, and extent of damage in steel plate-girder bridges. The hybrid scheme mainly consists of three sequential phases: 1) to alarm the occurrence of damage, 2) to classify the alarmed damage, and 3) to estimate the classified damage in detail. Damage types of interest include flexural stiffness-loss in girder and bolts-loose in supports. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation method. The feasibility of the proposed system is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid vibration-impedance signatures were measured for several damage scenarios.

  • PDF

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.