• 제목/요약/키워드: strong-motion accelerograms

검색결과 12건 처리시간 0.018초

내진설계를 위한 인공지진파 강진지속시간 기준의 평가 (Assessment of the Strong Motion Duration Criterion of Synthetic Accelerograms)

  • 허정원;정호섭;김재민;정연석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 2006
  • This paper addresses a fundamental research subject to complement and improve current domestic design specifications for the strong motion duration criterion and the envelop function of artificial accelerograms that can be applied to the earthquake-proof design of nuclear structures. The criteria for design response spectra and strong motion duration suggested by WRC RG 1.60 and ASCE Standard 4-98 are commonly being used in the profession, and they are first compared with each other and reviewed. By applying 152 real strong earthquake records that are over magnitude of 5 in the rock sites to the strong motion duration criterion in ASCE 4-98, an empirical regression model that predicts the strong motion duration as a function of earthquake magnitude is then developed. Using synthetically generated earthquake time histories for the five cases whose strong motion durations vary from 6 to 15 seconds, a seismic analysis is conducted to identify effects of the strong motion durations on the seismic responses of nuclear structures.

  • PDF

Applications of the wavelet transform in the generation and analysis of spectrum-compatible records

  • Suarez, Luis E.;Montejo, Luis A.
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.173-197
    • /
    • 2007
  • A wavelet-based procedure to generate artificial accelerograms compatible with a prescribed seismic design spectrum is described. A procedure to perform a baseline correction of the compatible accelerograms is also described. To examine how the frequency content of the modified records evolves with time, they are analyzed in the time and frequency using the wavelet transform. The changes in the strong motion duration and input energy spectrum are also investigated. An alternative way to match the design spectrum, termed the "two-band matching procedure", is proposed with the objective of preserving the non-stationary characteristics of the original record in the modified accelerogram.

강진지속시간 기준 개선을 위한 원전 격납구조물의 지진응답해석 (Seismic Response Analysis of NPP Containment Structures to Improve the Guidelines of Strong Motion Duration)

  • 허정원;정호섭;김재민;현창헌
    • 한국지진공학회논문집
    • /
    • 제15권4호
    • /
    • pp.33-43
    • /
    • 2011
  • 이 논문은 원전구조물의 내진설계에 적용되는 인공지진파의 강진지속시간과 포락함수에 대한 현행 국내 설계기준의 개선과 보완을 위해서 필요한 기반연구에 관한 내용을 다루고 있다. USNRC와 ASCE 4-98에서 제안한 응답스펙트럼과 강진지속시간에 대한 규정이 현재 통상적으로 사용되고 있으며, 첫 번째로 두 기준에 대한 비교와 검토를 수행하였다. 다음으로 총 209개의 암반사이트에서 실제 계측된 규모 5.0 이상인 강진기록을 ASCE 4-98의 강진지속시간기준에 적용한 결과를 통계 처리하여 지진규모에 대한 함수로 표현되는 강진지속시간의 실험적 예측모델을 제시하였다. 마지막으로 강진지속시간이 원전구조물의 지진응답특성에 미치는 영향을 파악하기 위하여 6초에서 20초까지 약 2초 간격으로 강진지속시간을 달리하는 10가지 Case에 대한 인공지진파를 각 30개씩 작성하고, 이들을 적용하여 대만 Hualien 지진시험구조물과 국내 울진 원자력발전소 원자로 격납구조물에 대한 광범위한 지진응답해석을 수행하고 그 결과를 분석하였다.

Displacements, damage measures and response spectra obtained from a synthetic accelerogram processed by causal and acausal Butterworth filters

  • Gundes Bakir, Pelin;Richard, J. Vaccaro
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.409-430
    • /
    • 2006
  • The aim of this study is to investigate the reliability of strong motion records processed by causal and acausal Butterworth filters in comparison to the results obtained from a synthetic accelerogram. For this purpose, the fault parallel component of the Bolu record of the Duzce earthquake is modeled with a sum of exponentially damped sinusoidal components. Noise-free velocities and displacements are then obtained by analytically integrating the synthetic acceleration model. The analytical velocity and displacement signals are used as a standard with which to judge the validity of the signals obtained by filtering with causal and acausal filters and numerically integrating the acceleration model. The results show that the acausal filters are clearly preferable to the causal filters due to the fact that the response spectra obtained from the acausal filters match the spectra obtained from the simulated accelerogram better than that obtained by causal filters. The response spectra are independent from the order of the filters and from the method of integration (whether analytical integration after a spline fit to the synthetic accelerogram or the trapezoidal rule). The response spectra are sensitive to the chosen corner frequency of both the causal and the acausal filters and also to the inclusion of the pads. Accurate prediction of the static residual displacement (SRD) is very important for structures traversing faults in the near-fault regions. The greatest adverse effect of the high pass filters is their removal of the SRD. However, the noise-free displacements obtained by double integrating the synthetic accelerogram analytically preserve the SRD. It is thus apparent that conventional high pass filters should not be used for processing near-fault strong-motion records although they can be reliably used for far-fault records if applied acausally. The ground motion parameters such as ARIAS intensity, HUSID plots, Housner spectral intensity and the duration of strong-motion are found to be insensitive to the causality of filters.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

On the variability of strong ground motions recorded from Vrancea earthquakes

  • Pavel, Florin;Vacareanu, Radu;Arion, Cristian;Neagu, Cristian
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 2014
  • The main focus of this paper is the analysis of the different components of the variability for strong ground motions recorded from earthquakes produced by the Vrancea subcrustal seismic source. The analysis is performed for two ground motion prediction equations: Youngs et al. (1997) and Zhao et al. (2006), recommended within the SHARE project for the Vrancea subcrustal seismic source and which are proposed in the work of Delavaud et al. (2012) and graded best in Vacareanu et al. (2013c). The first phase of the analysis procedure consists of a grading procedure. In the second phase, the single station sigma procedure is applied for both attenuation models in order to reduce some parts of ground motion models' variability produced by the ergodic assumption. The strong ground motion database which is used throughout the study consists of over 400 accelerograms recorded from 9 Vrancea intermediate-depth seismic events. The results of the single station sigma analysis show significant reduction of the standard deviations, especially in the case of the Youngs et al. (1997) attenuation model, which is also graded better than the other selected GMPE.

국내 지진 기록을 이용한 약진 지역에서의 인공지진파 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions for the Area with Low Seismicity)

  • 김승훈;이승창;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 1998
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well own that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This model is based on the simulation for the strong-motion earthquakes with magnitude greater than approximately 5.0~6.0, because it will be not only expected to cause structural damage but also involved the characteristics of earthquake motions. Also, the recorded earthquake motion within this range are still very scarce in Korea. Thus, it is necessary to verify the model by the application of it to the mid-magnitude (approximately 4.0~6.0) earthquakes actually recorded in domestic or foreign area. The purpose of the paper is to generate an artificial earthquake using the model of Yeh and Wen in the area with low seismicity.

  • PDF

2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점 (Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake)

  • 이철호;박지훈;김태진;김성용;김동관
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Effect of excitation intensity on slope stability assessed by a simplified approach

  • Korzec, Aleksandra;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.601-612
    • /
    • 2021
  • The paper concerns the selection of a design accelerograms used for the slope stability assessment under earthquake excitation. The aim is to experimentally verify the Arias Intensity as an indicator of the excitation threat to the slope stability. A simple dynamic system consisting of a rigid block on a rigid inclined plane subjected to horizontal excitation is adopted as a slope model. Strong ground motions recorded during earthquakes are reproduced on a shaking table. The permanent displacement of the block serves as a slope stability indicator. Original research stand allows us to analyse not only the relative displacement but also the acceleration time history of the block. The experiments demonstrate that the Arias Intensity of the accelerogram is a good indicator of excitation threat to the stability of the slope. The numerical analyses conducted using the experimentally verified extended Newmark's method indicate that both the Arias Intensity and the peak velocity of the excitation are good indicators of the impact of dynamic excitation on the dam's stability. The selection can be refined using complementary information, which is the dominant frequency and duration of the strong motion phase of the excitation, respectively.

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.