• 제목/요약/키워드: strong wind event

검색결과 49건 처리시간 0.025초

2020 강원영동 강풍 관측에서 지상 바람의 공간 변동성 분석 (Analysis of Spatial Variability of Surface Wind during the Gangwon Yeongdong Wind Experiments (G-WEX) in 2020)

  • 김유정;권태영
    • 대기
    • /
    • 제31권4호
    • /
    • pp.377-394
    • /
    • 2021
  • The recent largest forest fire in the Yeongdong region, Goseung/Okgae fires of 2019 occurred during YangGang wind event. The wind can be locally gusty and extremely dry, particularly in the complex terrain of Yeongdong. These winds can cause and/or rapidly spread wildfires, the threat of which is serious during the dry spring season. This study examines the spatial variability of the surface wind and its coupling with the upper atmospheric wind using the data during the IOP of the Gangwon Yeongdong Wind Experiments (G-WEX) conducted in 2020 and the data during YangGang wind event on 4~5 April 2019. In the case of IOPs, strong wind at the surface with a constant wind direction appears in the mountain area, and weak wind with large variability in wind direction appears from foothill to the coast in the vicinity of Gangneung region. However, in the 2019 event, strong wind at the surface with a constant wind direction appears in the entire region from the mountain to the coast, even with the stronger wind in the coast than in some part of the mountain area. The characteristics of the upper atmospheric wind related with the spatial distribution of surface wind show that during IOPs of G-WEX, a strong downdraft exists near the mountaintop in the level of about 1 to 4 km. However, in the 2019 event a strong downdraft is reinforced, when its location moves toward the coast and descends close to the ground. These downdrafts are generated by the breaking of mountain waves.

Meteorological events causing extreme winds in Brazil

  • Loredo-Souza, Acir M.
    • Wind and Structures
    • /
    • 제15권2호
    • /
    • pp.177-188
    • /
    • 2012
  • The meteorological events that cause most strong winds in Brazil are extra-tropical cyclones, downbursts and tornadoes. However, one hurricane formed off the coastline of southern Brazil in 2005, a tropical storm formed in 2010 and there are predictions that others may form again. Events such as those described in the paper and which have occurred before 1987, generate data for the wind map presented in the Brazilian wind loading code NBR-6123. This wind map presents the reference wind speeds based on 3-second gust wind speed at 10 m height in open terrain, with 50-year return period, varying from 30 m/s (north half of country) to 50 m/s (extreme south). There is not a separation of the type of climatological event which generated each registered velocity. Therefore, a thunderstorm (TS), an extra-tropical pressure system (EPS) or even a tropical cyclone (TC) are treated the same and its resulting velocities absorbed without differentiation. Since the flow fields generated by each type of meteorological event may be distinct, the indiscriminate combination of the highest wind velocities with aerodynamic coefficients from boundary layer wind tunnels may lead to erroneous loading in buildings.

2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향 (Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016)

  • 백승호;김윤배
    • 환경생물
    • /
    • 제36권2호
    • /
    • pp.156-164
    • /
    • 2018
  • 본 연구에서는 강풍에 의한 연안 용승 및 섬효과를 구체적으로 파악하기 위해서 춘계 강한 저기압 통과 전후를 대상으로 위성자료, 해양환경 및 물리적인 수직 구조와 함께 식물플랑크톤의 군집구조를 파악하였다. 5월 3일 강한 저기압이 통과하면서 남풍계열의 바람이 우점하였고, 10일 정도의 시간차를 둔 5월 12일에는 동한난류가 이동한 경로주변해역에서 높은 엽록소값이 관찰되었다. 식물플랑크톤 수평적 군집조성은 동한난류의 영향을 강하게 받은 울진 연안과 울릉도 사이의 정점에서는 규조류가 극히 높은 밀도로 우점하였고, 상대적으로 외양인 울릉도와 독도 섬주변에서는 섬효과에 의하여 침편조류 H. akashiwo가 높은 개체수를 유지하였다. 엽록소의 수직적 분포는 울진에서 울릉도로 이어지는 정점에서 엽록소 아표층극대 (Sub-surface Chl-a Maximum)가 20 m 층에서 관찰되었고, 울릉도와 독도 섬주변의 대부분 정점에서는 30~40 m 층까지 전 수층에 걸쳐 균일하게 높은 엽록소 형광값이 관찰되었다. 이는 섬효과에 의하여, 강한 수층혼합이 일어난 것을 의미하고, 그 결과 유광층 상부에 공급된 영양염류에 의하여 식물플랑톤이 대발생하였다. 결과적으로 춘계 한반도 남동해역(울진-울릉도-독도)에서는 남풍계열의 바람이 우점하면, 연안 용승이 발생할 수 있고, 이는 식물플랑크톤의 대발생에 중요한 역할을 하는 것으로 관찰되었다. 아울러, 동해 연안해역에서 기인된 식물플랑크톤은 동해 중앙 및 남서해역으로 공간이동하면서 울릉도-독도의 섬효과와 함께 동한난류의 사행, 소용돌이의 발달 등에 따라서 종조성이 다르게 나타날 가능성을 시사하였다.

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

56년간 한반도 강수 및 풍속의 극값 변화 (The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea)

  • 최의수;문일주
    • 대기
    • /
    • 제18권4호
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

2010년 태풍 특징 (Characteristics of Tropical Cyclones in 2010)

  • 임명순;문일주;차유미;장기호;강기룡;변건영;신도식;김지영
    • 대기
    • /
    • 제24권3호
    • /
    • pp.283-301
    • /
    • 2014
  • In 2010, only 14 tropical cyclones (TCs) were generated over the western North Pacific (WNP), which was the smallest since 1951. This study summarizes characteristics of TCs generated in 2010 over the WNP and investigates the causes of the record-breaking TC genesis. A long-term variation of TC activity in the WNP and verification of official track forecast in 2010 are also examined. Monthly tropical sea surface temperature (SST) anomaly data reveal that El Ni$\tilde{n}$o/Southern Oscillation (ENSO) event in 2010 was shifted from El Ni$\tilde{n}$o to La Ni$\tilde{n}$a in June and the La Ni$\tilde{n}$a event was strong and continued to the end of the year. We found that these tropical environments leaded to unfavorable conditions for TC formation at main TC development area prior to May and at tropics east of $140^{\circ}E$ during summer mostly due to low SST, weak convection, and strong vertical wind shear in those areas. The similar ENSO event (in shifting time and La Ni$\tilde{n}$a intensity) also occurred in 1998, which was the second smallest TC genesis year (16 TCs) since 1951. The common point of the two years suggests that the ENSO episode shifting from El Ni$\tilde{n}$o to strong La Ni$\tilde{n}$a in summer leads to extremely low TC genesis during La Ni$\tilde{n}$a although more samples are needed for confidence. In 2010, three TCs, DIANMU (1004), KOMPASU (1007) and MALOU (1009), influenced the Korean Peninsula (KP) in spite of low total TC genesis. These TCs were all generated at high latitude above $20^{\circ}N$ and arrived over the KP in short time. Among them, KOMPASU (1007) brought the most serious damage to the KP due to strong wind. For 14 TCs in 2010, mean official track forecast error of the Korea Meteorological Administration (KMA) for 48 hours was 215 km, which was the highest among other foreign agencies although the errors are generally decreasing for last 10 years, suggesting that more efforts are needed to improve the forecast skill.

THE KOREAN 1592-1593 RECORD OF A GUEST STAR: AN 'IMPOSTOR' OF THE CASSIOPEIA A SUPERNOVA?

  • Park, Changbom;Yoon, Sung-Chul;Koo, Bon-Chul
    • 천문학회지
    • /
    • 제49권6호
    • /
    • pp.233-238
    • /
    • 2016
  • The missing historical record of the Cassiopeia A (Cas A) supernova (SN) event implies a large extinction to the SN, possibly greater than the interstellar extinction to the current SN remnant. Here we investigate the possibility that the guest star that appeared near Cas A in 1592-1593 in Korean history books could have been an 'impostor' of the Cas A SN, i.e., a luminous transient that appeared to be a SN but did not destroy the progenitor star, with strong mass loss to have provided extra circumstellar extinction. We first review the Korean records and show that a spatial coincidence between the guest star and Cas A cannot be ruled out, as opposed to previous studies. Based on modern astrophysical findings on core-collapse SN, we argue that Cas A could have had an impostor and derive its anticipated properties. It turned out that the Cas A SN impostor must have been bright ($M_V=-14.7{\pm}2.2mag$) and an amount of dust with visual extinction of ${\geq}2.8{\pm}2.2mag$ should have formed in the ejected envelope and/or in a strong wind afterwards. The mass loss needs to have been spherically asymmetric in order to see the light echo from the SN event but not the one from the impostor event.

극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구 (A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica)

  • 권하택;박상종;이솔지;김성중;김백민
    • 대기
    • /
    • 제26권2호
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.

夏季 韓國 南東海域에서 湧昇과 關聯된 바람, 海水面 및 表層水溫의 變化 TEVARIATIONS OF SEA LEVEL AND SEA SURFACE TEPERATURE ASSOCIATED WITH WIND -INDUCED UPWELLING IN THE SOUTH

  • 이재철
    • 한국해양학회지
    • /
    • 제18권2호
    • /
    • pp.149-160
    • /
    • 1983
  • 해수면과 연안표층수온의 기록으로부터 바람에 의한 용승효과를 확인하기 위해서 1973년 부터 1979년까지의 자료들이 이용되었다. 하계에 남동해안에 평행한 바람이 우세하며 울기-감포 근해에서 용승을 일으키는 것으로 나타났는데 강한 남서풍이 3일 이상지속될 때 해수면과 표층수온이 감소하는 용승효과가 현저하게 나타났다. 평균적으로 한 번의 용승은 약10일동안 지속 되었고 그 동안에 해안에 평행안 성분의 평균풍속은 약 4.0m/sec였다.

  • PDF

The 2021 Australian/New Zealand Standard, AS/NZS 1170.2:2021

  • John D. Holmes;Richard G.J. Flay;John D. Ginger;Matthew Mason;Antonios Rofail;Graeme S. Wood
    • Wind and Structures
    • /
    • 제37권2호
    • /
    • pp.95-104
    • /
    • 2023
  • The latest revision of AS/NZS 1170.2 incorporates some new research and knowledge on strong winds, climate change, and shape factors for new structures of interest such as solar panels. Unlike most other jurisdictions, Australia and New Zealand covers a vast area of land, a latitude range from 11° to 47°S climatic zones from tropical to cold temperate, and virtually every type of extreme wind event. The latter includes gales from synoptic-scale depressions, severe convectively-driven downdrafts from thunderstorms, tropical cyclones, downslope winds, and tornadoes. All except tornadoes are now covered within AS/NZS 1170.2. The paper describes the main features of the 2021 edition with emphasis on the new content, including the changes in the regional boundaries, regional wind speeds, terrain-height, topographic and direction multipliers. A new 'climate change multiplier' has been included, and the gust and turbulence profiles for over-water winds have been revised. Amongst the changes to the provisions for shape factors, values are provided for ground-mounted solar panels, and new data are provided for curved roofs. New methods have been given for dynamic response factors for poles and masts, and advice given for acceleration calculations for high-rise buildings and other dynamically wind-sensitive structures.