• Title/Summary/Keyword: strong promoter

Search Result 196, Processing Time 0.032 seconds

Effect of PAH on CYP1B1 Gene Expression (PAH가 CYP1B1 유전자 발현에 미치는 영향)

  • Seo, Mi-Jung;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • Cytochrome P4501B1(CYP1B1) is known to be inducible by xenobiotic compounds such as policyclic aromatic hydrocarbon(PAH) and dioxins such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). And these induction of CYP1B1 is also regulated by many categories of chemicals. In order to investigate the effects of several chemicals on CYP1B1 gene expression in Hepa-I and MCF-7 cells, 5' flanking DNA of human CYP1B1 was cloned into pGL3 basic vector containing luciferase gene, and then transfected into these cells. After treatment of chemicals, the luciferase activity was measured. CYP1B1 enzyme metabolize PAHs and estradiol. CYP1B1 metabolize estradiol to 4-hydrozyestradiol that is considered as carcinogenic metabolite. Luciferase activity was induced about 20 folds over that control by 1 nM TCDD (2,3,7,8-tetrachloto-p-dioxin). Recent industrialized society, human has been widely been exposed to widespread environmental contaminants such as PAHs(polycyclic aromatic hydrocarbon) that are originated from the imcomplete combustion of hydrocarbons. PAHs are known to be ligands of the AhR(aryl hydrocarbon receptor). Induction of cytochrome P4501B1(CYP1B1) in cell culture is widely used as a biomarker for PAHs. Therefore we have studied the effect of PAHs in the human breast cancer cells MCF-7 to evaluate bioactivity of PAHs. We have used the United State of America EPA selected 13 different PAHs, PAHs mixtures and extracts from environmental samples to evaluate the bioassay system. We examined effects of PAHs on the CYP1B1-luciferase reporter gene and CYP1B1 mRNA level. Benzo(k)fluoranthene and dibenzo(a, h)anthracene showed strong response to CYP1B1 promoter activity stimulation, and also CYP1B1 mRNAs increase in MCF-7 cells in a concentration-dependent manner. Acenaphthene, anthracene, benzo(b)fluoranthene, fluorene, fluoranthene, anphthanlene, pyrene, phenanthrene and carbazole were weak responders in MCF-7 cells. RT-PCR analysis indicated that PAHs significantly up-regulate the level of CYP1B1 mRNA.

  • PDF

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

Overexpression and Periplasmic Transport of 5-Enolpyruvylshikimate 3-Phosphate Synthase in E. coli (대장균에서 5-Enolpyruvylshikimate 3-Phosphate Synthase의 대량 발현 및 Periplasmic Space로의 Transport)

  • 김남일;임재윤;조태주
    • Korean Journal of Microbiology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • 5-Enolpyruvylshikimate 3-phosphate(EPSP) synthase is the sixth enzyme of the shikimate pathway that synthesizes aromatic amino acids. The enzyme is a primary target for the glyphos'lte which is a broad-spectrum and environmetally safe herbicide. As a first step toward development of glyphpsate-resistant EPSP synthase, the EPSP synthase gene(aroA) was amplified by polymerase chain reaction and cluned into pET-25b vector. In this construct. designated pET-aro, the aroA gene is expressed under control of strong T7 promoter. and the EPSP synthase is produced as a fusion protein with pelB leader at N-terminus and HSV-tag and His-tag at C-terminus. When the pET-aro clone was induced to produce the enzyme, it was found that the EPSP synthase was successfully exported to peri plasmic space. The periplasmic transport was greatly dependent on the induction temperatures. Among the induction temperatures examined($25^{\circ}C$, $30^{\circ}C$, $34^{\circ}C$ and $37^{\circ}C$). induction at $34^{\circ}C$ gave rise to maximal periplasmic transport. The recomhinant EPSP synthase could have been purified hy $Ni^{2+}$ -affinity chromatography using the His-tag. and detected hy anti-HSV -tag antibody. The recombinant EPSP synthase also hound to phosphocellulose resin and was eluted hy shikimate 3-phosphate and phosphoenolpyruvate. as expected. The recombinant EPSP synthase purified from phosphocellulose resin showed typical EPSP synthase activity.

  • PDF

Polymorphisms in the TNF-α Gene and Extended HLA and TNF-α Haplotypes in Koreans (한국인에서의 TNF-α 유전자 다형성과 HLA/TNF-α 일배체형의 분포)

  • Park, Yoon June;Park, Hye Jin;Park, Myoung Hee
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.242-247
    • /
    • 2002
  • Background: Tumor necrosis factor-alpha (TNF-$\alpha$) is known to play an important role in various conditions such as inflammation, autoimmunity, apoptosis, insulin resistance and sleep induction. Five single nucleotide polymorphisms (SNPs) have been known to affect the transcriptional activities of TNF-$\alpha$: -1,031T/C, -863C/A, -857C/T, -308G/A and -238G/A. Methods: We have investigated 5 SNPs of the promoter region of TNF-$\alpha$ gene, the distribution of 5-locus TNF-$\alpha$ haplotypes, and their haplotypic associations with previously typed HLA-A, -B and -DRB1 loci in 107 healthy unrelated Koreans. TNF-$\alpha$ SNPs were typed using PCR-single-strand conformation polymorphism (SSCP) and PCR-restriction fragment length polymorphism (RFLP) methods. Results: The allele frequencies of -1,031C, -863A, -857T, -308A, and-238A, which are known as the high-producer-type, were 19.3%, 15.9%, 14.0%, 5.9%, and 2.9%, respectively. The frequency of -308A allele, known to be associated with autoimmune diseases, was 5.9% in Koreans which was lower than Caucasians (14~17%) and somewhat higher than Japanese (1.7%). Five most common TNF-$\alpha$ haplotypes (-1,031/-863/-857/-308/-238) comprised over 95% of total haplotypes: TCCGG (58.4%), CACGG (14.8%), TCTGG (13.7%), TCCAG (5.3%), and CCCGA (3.1%). Strong positive associations (P<0.001) were observed between TCCGG and B62; between CACGG and B51, $DRB1^*0901$; between TCTGG and B35, B54, B59, $DRB1^*1201$; and between TCCAG and A33, B58, $DRB1^*0301$, $DRB1^*1302$. Five most common extended haplotypes (>3%) comprised around 16% of total haplotypes: A33-B58-TCCAG-$DRB1^*1302$, A24-B52-TCCGG-$DRB1^*1502$, A33-B44-TCCGG-$DRB1^*1302$, A24-B7-TCCGG-$DRB1^*0101$, and A11-B62-TCCGG-$DRB1^*0406$. The distribution of extended HLA and TNF-$\alpha$ haplotypes showed that most of HLA haplotypes were almost exclusively associated with particular TNF-$\alpha$ haplotypes. Conclusion: The results obtained in this study would be useful as basic data for anthropologic studies and disease association studies in Koreans.

Isolation and Functional Analysis of the silA Gene That Controls Sexual Development in Response to Light in Aspergillus nidulans (Aspergillus nidulans의 광 조건하 유성분화에 관여하는 silA 유전자의 분리 및 기능분석)

  • Han, Sang-Yong;Ko, Jin-A;Kim, Jong-Hak;Han, Kyu-Yong;Han, Kap-Hoon;Han, Dong-Min
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • When a homothallic ascomycete Aspergillus nidulans is exposed to visible light, cleistothecial development is inhibited. The light response of development in A. nidulans implies the existence of delicate regulation process including reception and translocation of light signaling and determination of development. Previously, mutants that could develop cleistothecia even in the presence of relatively intensive visible light were isolated and several complementation groups were identified. A gene that was able to complement the silA98 mutation, which was responsible for preferred cleistothecia development under visible light, was isolated from AMA-NotI genomic library. The silA gene retained in the 4.3 kb recovered genomic library DNA has an open reading frame (ORF) consisted of 2,388 bp nucleotides, interrupted by 3 introns and consequently encoding 795 amino acids. The putative SilA carries a ${Zn_2}{Cys_6}$ binuclear cluster motif at N terminus and shows high amino acid sequence similarity to Aro80p of Saccharomyces cerevisiae. Deletion mutants of silA showed a strong induction of sexual development under visible light, indicating that SilA is involved in the negative regulation of sexual development in response to the light.

Effects of Natural Products on the Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase Activity in RAW264.7 Cell Culture System

  • Park, Bong-Joo;Cho, Myung-Haing;Kim, Kyeong-Ho;Lee, Sang-Kook;Lee, Chong-Soon;An, Gil-Hwan;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • v.5 no.3
    • /
    • pp.113-120
    • /
    • 1999
  • Nitric oxide (NO) is a free radical synthesized from L-arginine by nitric oxide synthase (NOS). It is believed that NO is an important mediator in numerous physiological and inflammatory responses. Particularly, a large amount of NO released from the inducible nitric oxide synthase (iNOS) is mostly associated with inflammatory processes. Overproduction of NO in these processes including sepsis and autoimmune diseases can have deleterious consequences and pathophysiologic relevance. Therefore, for the discovery of new inhibitory agents against iNOS activity, we have evaluated about 100 kinds of natural products after partition into three layers (n-hexane, ethyl acetate and aqueous) from 100% methanol extracts to study inhibitory effects on iNOS activity induced by lipopolysaccharide (LPS) in RAW264.7 cells culture system. As a positive control, curcumin, which is known as an anti-tumor promoter, anti-inflammatory agent as an iNOS inhibitor, was used and showed the dose-dependent inhibitory effect $(IC_{50},\;2.5\;{\mu}g/ml)$. Among tested fractions, the n-hexane fraction of Cimicifuga heracleifolia $(IC_{50}:\;9.65\;{\mu}g/ml)$, Forsythiae fructus $(IC_{50}:\;6.36\;{\mu}g/ml)$, Saposhnikovia divaricata $(IC_{50}:\;5.92\;{\mu}g/ml)$, and the ethyl acetate fraction of Chrysanthemum sibiricum $(IC_{50}:\;2.56\;{\mu}g/ml)$, Gastrodia elata $(IC_{50}:\;3.46\;{\mu}g/ml)$, and the aqueous fraction of Dianthus chinensis $(IC_{50}:\;6.73\;{\mu}g/ml)$, Euonymus alatus $(IC_{50}:\;6.78\;{\mu}g/ml)$, Mechania urticifoloria $(IC_{50}:\;8.01\;{\mu}g/ml)$ showed strong inhibitory activity against LPS-stimulated iNOS. Especially, the ethyl acetate fraction of Chrysanthemum sibiricum $(IC_{50}:\;2.56\;{\mu}g/ml)$, which exhibited the strongest inhibition against iNOS, was fractionated with silica-gel column chromatography. These subfractions exhibited dose-dependent inhibition against iNOS activity in the range of $2.59-5.6\;{\mu}g/ml$ except for fraction No. 3, 4, 5, 6, 8, 9, and 16. Our study shows that Chrysanthemum sibiricum has the strongest inhibitory effect against iNOS activity and has similar effect to curcumin. Therefore, further studies for the identification of active principles from Chrysanthemum sibiricum and investigation for the mechanism of the inhibition of iNOS by active principles will be performed.

  • PDF

Expression and Antibacterial Activity of Recombinant Human Lactoferrin in Methylotrophic Yeast, Pichia pastoris (Methylotrophic Yeast, Pichia pastoris에서 사람 락토페린의 발현 및 항균성 연구)

  • Lee Sang O;Im Eun Mi;Nam Eun Joo;Lee Hyune Hwan
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.348-354
    • /
    • 2004
  • The expression and antibacterial. activity of recombinant human lactoferrin (hLf) was studied from meth­ylotrophic yeast Pichia pastoris. The gene encoding hLf, isolated from human breast cDNA library, was subcloned into the expression vector, pPIC3.5K under the control of AOX1 promoter. The gene was integrated into the host chromosome and was identified by Southern blotting. The expression of the integrated gene was investigated by RT-PCR, Northern blotting, SDS-PAGE and Western blotting. Discrete band corresponding to hLf was detected from the SDS-PAGE, which was confirmed by Western blotting. The expression was also confirmed by RT-PCR and Northern blotting. The antibacterial activity of the recombinant hLf (rhLf) was investigated using Staphy­lococcus aureus ATCC 6538P and Micrococcus flavus ATCC 10240 as test organisms. The rhLf showed strong antibacterial activities against the bacteria. Furthermore, many Gram-negative animal pathogens such as E.coli ATCC8739, 25922, and Salmonella typhimurium 114 and 115, Pseudomonas fluorescens ID 963 I, P. aeruginosa KCCM 11802, and Gram-positive bacteria Bacillus mesentericus were also inhibited in their growth by the rhLf.

Differences in swine gut microbiota in southern region of Republic of Korea (한국 남부 지역별 돼지 장내 미생물생태 비교분석)

  • Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.81-85
    • /
    • 2015
  • Since the banning of antibiotic growth promoters (AGPs), the death of livestock has been increased, thus there is a strong demand for AGP-alternatives. Modulation of gut microbiota has been reported to affect host physiological functions and suggested to be a novel approach for developing AGP-alternatives. However, little has been understood about livestock gut microbiota compared to that of humans. We conducted preliminary study provide fundamental information regarding to regional differences in swine gut microbiota. Swine fecal samples were obtained from farms in Jeju (n=40), Gwangju (n=28), and Haenam (n=30). MiSeq was used to sequence 16S rRNA V4 region, and Mothur pipeline (Schloss et al., 2009) was used for data processing. A total of 5,642,125 reads were obtained and 3,868,143 reads were remained after removing erroneous reads. Analysis of taxonomic composition at the phylum level indicated greater abundance of Firmicutes among Jeju swine, and cluster analysis of distribution of operational taxonomic units also showed regional differences among swine gut microbiota. In addition, correlation analysis between non-metric multidimensional scaling and abundance of phyla suggested that the phyla Actinobacter, Verrucomicrobia, Firmicutes, and Fibrobacteres were driving factors for the regional differences. Livestock gut microbiota may be affected by diet and practices in farms. Our results indicated significant regional differences in swine gut microbiota, suggesting that future livestock gut microbiota studies should be designed with the regional differences in mind.

AtERF11 is a positive regulator for disease resistance against a bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana (애기장대 AtERF11 유전자에 의한 Pseudomonas syringae에 대한 병 저항성 유도)

  • Kwon, Tack-Min;Jung, Yun-Hui;Jeong, Soon-Jae;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.235-240
    • /
    • 2007
  • AvrRpt2 protein triggers hypersensitive response (HR) and strong disease resistance when it is translocated from a bacterial pathogen Pseudomonas sp. to host plant cells containing a cognate RPS2 resistance protein through Type III Secretion System (TTSS). However, AvrRpt2 protein can function as the effector that suppresses a basal defense and enhances the disease symptom when functional RPS2 resistance protein is absent in the infected plant cells. Using Affymetrix Arabidopsis DNA chip, we found that many genes were specifically regulated by AvrRpt2 protein in the rps2 Arabidopsis mutant. Here, we showed that expression of AtERF11 that is known as a member of B1a subcluster of AP2/ERF transcription factor family was down regulated specifically by AvrRpt2. To determine its function in plant resistance, we also generated the Arabidopsis thaliana transgenic plants constitutively overexpressing AtERF11 under CaMV 355 promoter, which conferred an enhanced resistance against a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, these results collectively suggest that AtERF11 plays a role as a positive regulator for disease resistance against biotrophic bacterial pathogen in plant.

Expression Profiles of Streptomyces Doxorubicin Biosynthetic Gene Cluster Using DNA Microarray System (DNA Microarray 시스템을 이용한 방선균 독소루비신 생합성 유전자군의 발현패턴 분석)

  • Kang Seung-Hoon;Kim Myung-Gun;Park Hyun-Joo;Kim Eung-Soo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Doxorubicin is an anthracycline-family polyketide compound with a very potent anti-cancer activity, typically produced by Streptomyces peucetius. To understand the potential target biosynthetic genes critical for the doxorubicin everproduction, a doxorubicin-specific DNA microarray chip was fabricated and applied to reveal the growth-phase-dependent expression profiles of biosynthetic genes from two doxorubicin-overproducing strains along with the wild-type strain. Two doxorubicin-overproducing 5. peucetius strains were generated via over-expression of a dnrl (a doxorubicin-specific positive regulatory gene) and a doxA (a gene involved in the conversion from daunorubicin to doxorubicin) using a streptomycetes high expression vector containing a strong ermE promoter. Each doxorubicin-overproducing strain was quantitatively compared with the wild-type doxorubicin producer based on the growth-phase-dependent doxorubicin productivity as well as doxorubicin biosynthetic gene expression profiles. The doxorubicin-specific DNA microarray chip data revealed the early-and-steady expressions of the doxorubicin-specific regulatory gene (dnrl), the doxorubicin resistance genes (drrA, drrB, drrC), and the doxorubicin deoxysugar biosynthetic gene (dnmL) are critical for the doxorubicin overproduction in S. peucetius. These results provide that the relationship between the growth-phase-dependent doxorubicin productivity and the doxorubicin biosynthetic gene expression profiles should lead us a rational design of molecular genetic strain improvement strategy.