• Title/Summary/Keyword: strong promoter

Search Result 196, Processing Time 0.024 seconds

The Two-Component Protease NS2B-NS3 of Dengue Virus Type 2: Cloning, Expression in Escherichia coli and Purification of the NS2B, NS3(pro) and NS2B-NS3 Proteins

  • Champreda, Veerawat;Khumthong, Rabuesak;Subsin, Benchamas;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • Proteolytic processing of the dengue virus serotype 2 polyprotein precursor is catalyzed by a host signal peptidase and a virus encoded two-component protease consisting of the nonstructural proteins, NS2B and NS3. We expressed in Escherichia coli the NS2B, NS3(pro) and NS2B-NS3 proteins from the dengue virus type 2 strain 16681 as N-terminal fusions with a hexahistidine affinity tag under the control of the inducible trc promoter. All fusion proteins were purified to >90% purity by detergent extraction of inclusion bodies and a single step metal chelate chromatography. Proteins were refolded on-column and recovered with yields of 0.5, 6.0 and 1.0 mg/l of E. coli culture that was grown to $OD_{600}=1.0$ for NS2B, NS3(pro) and NS2B-NS3, respectively. Purified proteins gave strong signals in Western blots using $Ni^{2+}-nitrilotriacetic$ acid as a probe for the presence of the polyHis tag. During the purification process, $(His)_{6}NS2B-NS3$ was apparently not autoproteolytically cleaved at the NS2B/NS3 site.

  • PDF

In Vitro Transcription Analyses of Autographa californica Nuclear Polyhedrosis Virus Genes

  • Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.

  • PDF

Expression, Purification, and Characterization of C-Terminal Amidated Glucagon in Streptomyces lividans

  • Qi, Xiaoqiang;Jiang, Rong;Yao, Cheng;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1076-1080
    • /
    • 2008
  • Glucagon, a peptide hormone produced by alpha-cells of Langerhans islets, is a physiological antagonist of insulin and stimulator of its secretion. In order to improve its bioactivity, we modified its structure at the C-terminus by amidation catalyzed by a recombinant amidase in bacterial cells. The human gene coding for glucagon-gly was PCR amplified using three overlapping primers and cloned together with a rat ${\alpha}$-amidase gene in plasmid pMGA. Both genes were expressed under control of the strong constitutive promoter of aph and secretion signal melC1 in Streptomyces lividans. With Phenyl-Sepharose 6 FF, Q-Sepharose FF, SP-Sepharose FF chromatographies and HPLC, the peptide was purified to about 93.4% purity. The molecular mass of the peptide is 3.494 kDa as analyzed by MALDI TOF, which agrees with the theoretical mass value of the C-terminal amidated glucagon. The N-terminal sequence of the peptide was also determined, confirming its identity with human glucagon at the N-terminal part. ELISA showed that the purified peptide amide is bioactive in reacting with glucagon antibodies.

Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal α-Amylase Gene in Aspergillus oryzae

  • Yin, Yanchen;Mao, Youzhi;Yin, Xiaolie;Gao, Bei;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.988-998
    • /
    • 2015
  • The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30oC. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.

Development of a Monitoring Vector for Leuconostoc mesenteroides Using the Green Fluorescent Protein Gene

  • Lee, Kwan-Hoon;Park, Woo-Jung;Kim, Joo-Yun;Kim, Han-Geun;Lee, Jung-Min;Kim, Jeong-Hwan;Park, Jeong-Woo;Lee, Jong-Hoon;Chung, Sung-Kyun;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1213-1216
    • /
    • 2007
  • The vector pCW5 with plasmid pC7, originally isolated in Lactobacillus paraplantarum C7 derived from kimchi, was constructed using a p32 strong promoter, the pC7 replicon, and green fluorescent protein (GFP) as the reporter. The constructed vector was transformed into E. coli and Leuconostoc mesenteroides, and GFP expression detected using a Western blot analysis. GFP fluorescence was recognized in E. coli and Leuconostoc mesenteroides using a confocal microscope. In addition, GFP fluorescence was also clearly detected in several industrially important lactic acid bacteria (LAB), including Lactobacillus bulgaricus, Lactobacillus paraplantarum, and Lactobacillus plantarum. Thus, pCW5 was shown to be effective for Leuconostoc mesenteroides when using GFP as the reporter, and it can also be used as a broad-host-range vector for other lactic acid bacteria.

Effects of Glycerol and Shikimic Acid on Rapamycin Production in Streptomyces rapamycinicus

  • La, Huyen Thi Huong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy;Nguyen, Quyen Minh Huynh;Nguyen, Minh Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.296-302
    • /
    • 2020
  • Rapamycin, derived from Streptomyces rapamycinicus, is an important bioactive compound having a therapeutic value in managing Parkinson's disease, rheumatoid arthritis, cancer, and AIDS. Because of its pharmaceutical activity, studies over the past decade have focused on the biosynthesis of rapamycin to enhance its yield. In this study, the effect of rapG on rapamycin production was investigated. The rapG expression vector was constructed by utilizing the integration vector pSET152 under the control of the erythromycin resistance gene (ermE), a strong constitutive promoter. The rapamycin yield of wild type (WT) and WT/rapG overexpression mutant strains, under fermentation conditions, was analyzed by high-performance liquid chromatography (HPLC). Our results revealed that overexpression of rapG increased rapamycin production by approximately 4.9-fold (211.4 mg/l) in MD1 containing 15 g/l of glycerol, compared to that of the WT strain. It was also found that Illicium verum powder (10 g/l), containing shikimic acid, enhanced rapamycin production in both WT and WT/rapG strains. Moreover, the amount of rapamycin produced by the WT/rapG strain was statistically higher than that produced by the WT strain. In conclusion, the addition 15 g/l glycerol and 15 g/l I. verum powder produced the optimal conditions for rapamycin production by WT and WT/rapG strains.

High Throughput Screening on Angiogenesis Inhibitor and Promoter of Medicinal Plants using a Protein Microarray Chip

  • In, Dong-Su;Lee, Min-Su;Bang, Kyong-Hwan;Kim, Ok-Tae;Hyun, Dong-Yun;Ahn, Young-Sup;Cha, Seon-Woo;Seong, Nak-Sul;Kim, Eung-Youn;Shin, Yoo-Soo;Kang, In-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • The effects of angiogenesis inhibitor from the extract libraries of Korean and Chinese medicinal plants were investigated using a protein microarray chip. Protein chip was constructed by immobilization of integrin ${\alpha}_5{\beta}_1$ on protein chip base plates and employed far screening active extracts that inhibit the integrin-fibronectin interaction from the extract libraries. The 100 extracts of medicinal plants were obtained from extract bank of National Institute of Crop Science, RDA. The 14 extracts among 100 extract libraries were shown efficient inhibition activity for the interaction between integrin-fibronectin. The medicinal plants of 14 extracts were Vitex negundo var. incisa (Lam.) C.B. Clarke, Epimedium koreanum Nakai, Cedrela sinensis A. Juss, Ipomea aquatica Forsk, Schisandra chinensis Baill, Pulsatilla koreana Nakai, Paeonia lactiflora Pall. var.hortensis Makino, Oenothera odorata, Allium chinense, Allium victorialis var. platyphyllum MAKINO, Polygonatum odoratum Druce var. pluriflorum Ohwi, Hosta lancifolia, Agrimonia pilosa L. var. japonica Nakai and Potentilla chinensis SER. The Paeonia lactiflora, Oenothera, and Agrimonia pilosa from these 14 extracts libraries were shown strong inhibition activity of integrin ${\alpha}_5{\beta}_1$.

Effects of the Repression of sphpr1 Expression on Growth and mRNA Export in Fission Yeast (분열효모에서 sphpr1 유전자의 결실이 생장 및 mRNA Export에 미치는 영향)

  • Lee, Hyun-Joo;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.171-174
    • /
    • 2012
  • THOC1/Hpr1 is one subunit of THO complex that is an evolutionally conserved assembly involved in the mRNP packaging and mRNA export during transcription elongation. In fission yeast Schizosaccharomyces pombe, an ortholog (spHpr1) of THOC1/Hpr1 was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spHpr1-coding region with a $kan^r$ gene using one-step gene disruption method. Tetrad analysis showed that the sphpr1 is essential for growth. Over-expression of sphpr1 from strong nmt1 promoter caused no defects of growth and mRNA export. However, repression of the sphpr1 expression resulted in growth inhibition accompanied by accumulation of poly$(A)^+$ RNA in the nucleus. These results suggest that spHpr1 is involved in mRNA export from the nucleus to cytoplasm.

Association of an Anti-inflammatory Cytokine Gene IL4 Polymorphism with the Risk of Type 2 Diabetes Mellitus in Korean Populations

  • Go, Min-Jin;Min, Hae-Sook;Lee, Jong-Young;Kim, Sung-Soo;Kim, Yeon-Jung
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.114-120
    • /
    • 2011
  • Chronic inflammation has been implicated as one of the important etiological factors in insulin resistance and type 2 diabetes mellitus (T2DM). To investigate the role of anti-inflammatory cytokines in the development of T2DM, we conducted a case-control study to assess the association between IL4/IL4R polymorphisms and disease risk. We firstly identified single nucleotide poly-morphisms (SNP) at IL4 and IL4RA loci by sequencing the loci in Korean participants. Case-control studies were conducted by genotyping the SNPs in 474 T2DM cases and 470 non-diabetic controls recruited from community-based cohorts. Replication of the associated signals was performed in 1,216 cases and 1,352 controls. We assessed effect of IL4 -IL4RA interaction on T2DM using logistic regression method. The functional relevance of the SNP associated with disease risk was determined using a reporter expression assay. We identified a strong association between the IL4 promoter variant rs2243250 and T2DM risk (OR=0.77; 95% CI, 0.67~0.88; p=$1.65{\times}10^{-4}$ in the meta-analysis). The reporter gene expression assay demonstrated that the presence of rs2243250 might affect the gene expression level with ~1.5-fold allele difference. Our findings contribute to the identification of IL4 as a T2D susceptibility locus, further supporting the role of anti-inflammatory cytokines in T2DM disease development.

Association of Poor Prognosis Subtypes of Breast Cancer with Estrogen Receptor Alpha Methylation in Iranian Women

  • Izadi, Pantea;Noruzinia, Mehrdad;Fereidooni, Foruzandeh;Nateghi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4113-4117
    • /
    • 2012
  • Breast cancer is a prevalent heterogeneous malignant disease. Gene expression profiling by DNA microarray can classify breast tumors into five different molecular subtypes: luminal A, luminal B, HER-2, basal and normal-like which have differing prognosis. Recently it has been shown that immunohistochemistry (IHC) markers including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2), can divide tumors to main subtypes: luminal A (ER+; PR+/-; HER-2-), luminal B (ER+;PR+/-; HER-2+), basal-like (ER-;PR-;HER2-) and Her2+ (ER-; PR-; HER-2+). Some subtypes such as basal-like subtype have been characterized by poor prognosis and reduced overall survival. Due to the importance of the ER signaling pathway in mammary cell proliferation; it appears that epigenetic changes in the $ER{\alpha}$ gene as a central component of this pathway, may contribute to prognostic prediction. Thus this study aimed to clarify the correlation of different IHC-based subtypes of breast tumors with $ER{\alpha}$ methylation in Iranian breast cancer patients. For this purpose one hundred fresh breast tumors obtained by surgical resection underwent DNA extraction for assessment of their ER methylation status by methylation specific PCR (MSP). These tumors were classified into main subtypes according to IHC markers and data were collected on pathological features of the patients. $ER{\alpha}$ methylation was found in 25 of 28 (89.3%) basal tumors, 21 of 24 (87.5%) Her2+ tumors, 18 of 34 (52.9%) luminal A tumors and 7 of 14 (50%) luminal B tumors. A strong correlation was found between $ER{\alpha}$ methylation and poor prognosis tumor subtypes (basal and Her2+) in patients (P<0.001). Our findings show that $ER{\alpha}$ methylation is correlated with poor prognosis subtypes of breast tumors in Iranian patients and may play an important role in pathogenesis of the more aggressive breast tumors.