• 제목/요약/키워드: strong ground motion durations

검색결과 4건 처리시간 0.016초

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

An empirical bracketed duration relation for stable continental regions of North America

  • Lee, Jongwon;Green, Russell A.
    • Earthquakes and Structures
    • /
    • 제3권1호
    • /
    • pp.1-15
    • /
    • 2012
  • An empirical predictive relationship correlating bracketed duration to earthquake magnitude, site-to-source distance, and local site conditions (i.e. rock vs. stiff soil) for stable continental regions of North America is presented herein. The correlation was developed from data from 620 horizontal motions for central and eastern North America (CENA), consisting of 28 recorded motions and 592 scaled motions. The bracketed duration data was comprised of nonzero and zero durations. The non-linear mixed-effects regression technique was used to fit a predictive model to the nonzero duration data. To account for the zero duration data, logistic regression was conducted to model the probability of zero duration occurrences. Then, the probability models were applied as weighting functions to the NLME regression results. Comparing the bracketed durations for CENA motions with those from active shallow crustal regions (e.g. western North America: WNA), the motions in CENA have longer bracketed durations than those in the WNA. Especially for larger magnitudes at far distances, the bracketed durations in CENA tend to be significantly longer than those in WNA.

Transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying ground motion

  • Haciefendioglu, Kemal
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.647-664
    • /
    • 2006
  • The main purpose of this paper is to investigate the effect of transient stochastic analysis on nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are analyzed by a stochastic finite element method based on the equivalent linear method which considers the nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial variability of ground motion is taken into account with the incoherence, wave-passage and site response effects. Stationary as well as transient stochastic response analyses are performed for the considered dam types. A time dependent frequency response function is used throughout the study for transient stochastic responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical durations of strong shaking.

2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점 (Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake)

  • 이철호;박지훈;김태진;김성용;김동관
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.