• Title/Summary/Keyword: strong formulation

Search Result 147, Processing Time 0.029 seconds

Factors Influencing the Successful Implementation of the ERP System (ERP 시스템의 성공적 구현에 영향을 미치는 요인)

  • Kim, Byung-Gon;Oh, Jay-In
    • Asia pacific journal of information systems
    • /
    • v.12 no.2
    • /
    • pp.137-162
    • /
    • 2002
  • As the ERP system become recognized as a strategic weapon of a firm, the way how to implement the system successfully has been an important issue for both practitioners and the academic community. The objective of this research is to identify the critical success factors influencing the implementation of the ERP system and to suggest the tasks to be considered first for the effective implementation of the system. The results from the analysis of data collected from the 169 firms among those which have implemented either the Oracle package or the SAP package in Korea are as follows. The important factors for the successful implementation of the ERP system include the strength of rivalry among competing firms; the degree to which information systems are matured; the information systems strategy of a firm; the support and concern from the top; and the technical openness between the ERP system and the legacy system such as network, hardware, and software. The tasks to be considered first for the effective implementation of the ERP system cover the same degree of feeling between labor and management on the threat to survive; the formulation of information systems strategy at the strategic level; CEO's strong will and resolution; the process automation and informatization of a firm; and the infrastructure including intranet and databases.

Calculation of 3-Dimensional Flow Through an Impeller of Centrifugal Compressor (원심압축기 회전차 내부의 3차원 유동해석)

  • ;;Kang, S. H.;Jeon, S. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2617-2629
    • /
    • 1995
  • The flow through a centrifugal compressor rotor was calculated using the quasi-3-dimensional and fully 3-dimensional Navier-Stokes solution methods. The calculated results, obtained during the development of the computer codes for both methods are discussed. In the inviscid quasi 3-dimensional analysis, stream function formulation was used for the blade to blade (B-B) plane calculations, and the streamline curvature method was used for the meridional (H-S) plane calculations. In the viscous 3-dimensional flow analysis, a control volume method based on a general rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. The quasi-3-dimensional analysis reasonably predicts the pressure distributions and requires much less computation time in the region where viscous effects are not strong; however, it fails to predict velocity field and loss mechanism through the impeller passage. The viscous 3-dimensional flow analysis shows reasonable pressure distributions and typical jet-wake flow field through the impeller passage. Secondary flow and total pressure distributions on cross-sectional planes explain the loss mechanisms through the impeller.

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

Online damage detection using pair cointegration method of time-varying displacement

  • Zhou, Cui;Li, Hong-Nan;Li, Dong-Sheng;Lin, You-Xin;Yi, Ting-Hua
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.309-325
    • /
    • 2013
  • Environmental and operational variables are inevitable concerns by researchers and engineers when implementing the damage detection algorithm in practical projects, because the change of structural behavior could be masked by the conditions in a large extent. Thus, reliable damage detection methods should have a virtue of immunity from environmental and operational variables. In this paper, the pair cointegration method was presented as a novel way to remove the effect of environmental variables. At the beginning, the concept and procedure of this approach were introduced, and then the theoretical formulation and numerical simulations were put forward to illustrate the feasibility. The jump exceeding the control limit in the residual indicates the occurrence of damage, while the direction and magnitude imply the most potential damage location. In addition, the simulation results show that the proposed method has strong ability to resist the noise.

Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application (충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.571-579
    • /
    • 2009
  • For the flow analysis of reactive compressible media involving energetic materials and metallic confinements, a Hydro-SCCM (Shock Compression of Condensed Matter) tool is developed for handling multi-physics shock analysis of energetics and inerts. The highly energetic flows give rise to the strong non-linear shock waves and the high strain rate deformation of compressible boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multi-fluid method is formulated. Mathematical formulation of explosive dynamics involving condensed matter is explained with an emphasis on validating and application of hydro-SCCM to a series of problems of high speed multimaterial dynamics in nature.

Modeling the Anisotropy of Initial Yield Strength and Hardening Behavior of Crystals with Thin Platelet Precipitates (얇은 판상의 석출을 포함한 결정의 초기항복응력 이방성 및 경화거동에 관한 모델링)

  • Kim J. H.;Han C. S.;Kang T. J.;Chung K.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.496-501
    • /
    • 2005
  • Precipitates, present in most commercial alloys, can have a strong influence on strength and hardening behavior of a single crystal. The effect of thin precipitates on the anisotropy of initial slip resistance and hardening behavior of crystals is modeled in this article. For the convenience of the computational derivation and implementation, the material formulation is given in the unrelated intermediate configuration mapped by the plastic part of the deformation gradient. Material descriptions for the considered two phased aggregates consisting in lattice hardening as well as isotropic hardening and kinematic hardening are suggested. Numerical simulations of various loading cases are presented to discuss and assess the performance of the suggested model. From the results of the numerical simulation, it is found that the suggested model represents the initial plastic anisotropy at least qualitatively well and that it has an improved representation of various characteristic hardening behaviors in comparison with conventional hardening descriptions where the precipitate structure is not reflected.

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.

Current overshoot operation of a REBCO magnet to mitigate SCF

  • Lee, Changhyung;Hahn, Seungyong;Bang, Jeseok;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • Due to large in-field current carrying capacity and strong mechanical strength, a REBCO wire has been regarded as a viable high temperature superconductor (HTS) option for high field MRI and > 1 GHz (>23.5 T) NMR magnets. However, a REBCO magnet is well known to have an inherent problem of field inhomogeneity, so-called 'Screening Current induced magnetic Field (SCF)'. Recently, 'field shaking' and 'current overshoot operation' techniques have been successfully demonstrated to mitigate the SCF and enhance the field homogeneity by experiments. To investigate the effectiveness of current overshooting operation technique, a numerical simulation is conducted for a test REBCO magnet composed of a stack of double pancake coils using '2D edge-element magnetic field formulation' combined with 'domain homogenization' scheme. The simulation result demonstrates that an appropriate amount of current overshoot can negate the SCF. To verify the simulation results, current overshoot experiments are conducted for the REBCO magnet in liquid nitrogen. Experimental results also demonstrate the possible application of current overshoot technique to mitigate the SCF and enhance the field homogeneity.

Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method

  • Bouazza, Mokhtar;Becheri, Tawfiq;Boucheta, Abderrahmane;Benseddiq, Noureddine
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • The purpose of this work is to analyze the bending behavior of laminated composite plates using the refined fourvariable theory and the finite element method approach using an ANSYS 12 computational code. The analytical model is based on the multilayer plate theory of shear deformation of the nth-order proposed by Xiang et al 2011 using the theory principle developed by Shimpi and Patel 2006. Unlike other theories, the number of unknown functions in the present theory is only four, while five or more in the case of other theories of shear deformation. The formulation of the present theory is based on the principle of virtual works, it has a strong similarity with the classical theory of plates in many aspects, it does not require shear correction factor and gives a parabolic description of the shear stress across the thickness while filling the condition of zero shear stress on the free edges. The analysis is validated by comparing results with those in the literature.

Multiparameter recursive reliability quantification for civil structures in meteorological disasters

  • Wang, Vincent Z.;Fragomeni, Sam
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.711-726
    • /
    • 2021
  • This paper presents a multiple parameters-based recursive methodology for the reliability quantification of civil structures subjected to meteorological disasters. Recognizing the challenge associated with characterizing at a single stroke all the meteorological disasters that may hit a structure during its service life, the proposed methodology by contrast features a multiparameter recursive mechanism to describe the meteorological demand of the structure. The benefit of the arrangements is that the essentially inevitable deviation of the practically observed meteorological data from those in the existing model can be mitigated in an adaptive manner. In particular, the implications of potential climate change to the relevant reliability of civil structures are allowed for. The application of the formulated methodology of recursive reliability quantification is illustrated by first considering the reliability quantification of a linear shear frame against simulated strong wind loads. A parametric study is engaged in this application to examine the effect of some hyperparameters in the configured hierarchical model. Further, the application is extended to a nonlinear hysteretic shear frame involving some field-observed cyclone data, and the incompleteness of the relevant structural diagnosis data that may arise in reality is taken into account. Also investigated is another application scenario where the reliability of a building envelope is assessed under hailstone impacts, and the emphasis is to demonstrate the recursive incorporation of newly obtained meteorological data.