• 제목/요약/키워드: stromal cells

검색결과 387건 처리시간 0.025초

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes

  • Song, Yae Chan;Lee, Seung Eon;Jin, Young;Park, Hyun Woo;Chun, Kyung-Hee;Lee, Han-Woong
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.763-773
    • /
    • 2020
  • Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.

Repopulation of autophagy-deficient stromal cells with autophagy-intact cells after repeated breeding in uterine mesenchyme-specific Atg7 knockout mice

  • Ji-Eun Oh;Sojung Kwon;Hyunji Byun;Haengseok Song;Hyunjung Jade Lim
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권3호
    • /
    • pp.170-176
    • /
    • 2023
  • Objective: Autophagy is highly active in ovariectomized mice experiencing hormone deprivation, especially in the uterine mesenchyme. Autophagy is responsible for the turnover of vasoactive factors in the uterus, which was demonstrated in anti-Müllerian hormone receptor type 2 receptor (Amhr2)-Cre-driven autophagy-related gene 7 (Atg7) knockout (Amhr-Cre/Atg7f/f mice). In that study, we uncovered a striking difference in the amount of sequestosome 1 (SQSTM1) accumulation between virgin mice and breeder mice with the same genotype. Herein, we aimed to determine whether repeated breeding changed the composition of mesenchymal cell populations in the uterine stroma. Methods: All female mice used in this study were of the same genotype. Atg7 was deleted by Amhr2 promoter-driven Cre recombinase in the uterine stroma and myometrium, except for a triangular stromal region on the mesometrial side. Amhr-Cre/Atg7f/f female mice were divided into two groups: virgin mice with no mating history and aged between 11 and 12 months, and breeder mice with at least 6-month breeding cycles with multiple pregnancies and aged around 12 months. The uteri were used for Western blotting and immunofluorescence staining. Results: SQSTM1 accumulation, representing Atg7 deletion and halted autophagy, was much higher in virgin mice than in breeders. Breeders showed reduced accumulation of several vasoconstrictive factors, which are potential autophagy targets, in the uterus, suggesting that the uterine stroma was repopulated with autophagy-intact cells during repeated pregnancies. Conclusion: Multiple pregnancies seem to have improved the uterine environment by replacing autophagy-deficient cells with autophagy-intact cells, providing evidence of cell mixing.

Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure

  • Evans, Isabel;Kim, Mi-Yeon
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.189-193
    • /
    • 2009
  • During development lymphoid tissue inducer (LTi) cells are the first hematopoietic cells to enter the secondary lymphoid anlagen and induce lymphoid tissue neogenesis. LTi cells induce lymphoid tissue neogensis by expressing a wide range of proteins that are associated with lymphoid organogenesis. Among these proteins, membrane-bound lymphotoxin (LT) $\alpha1\beta2$ has been identified as a critical component to this process. LT$\alpha1\beta2$ interacts with the LT$\beta$-receptor on stromal cells and this interaction induces up-regulation of adhesion molecules and production of chemokines that are necessary for the attraction, retention and organization of other cell types. Constitutive expression of LT$\alpha1\beta2$ in adult LTi cells can result in the formation of a lymphoid-like structure called tertiary lymphoid tissue. In this review, we summarize the function of fetal and adult LTi cells and their involvement in secondary and tertiary lymphoid tissue development in murine models.

Generation of $CD2^+CD8^+$ NK Cells from c-$Kit^+$ Bone Marrow Cells in Porcine

  • Lim, Kyu-Hee;Han, Ji-Hui;Roh, Yoon-Seok;Kim, Bum-Seok;Kwon, Jung-Kee;You, Myoung-Jo;Han, Ho-Jae;Ejaz, Sohail;Kang, Chang-Won;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.167-174
    • /
    • 2012
  • Natural killer (NK) cells provide one of the initial barriers of cellular host defense against pathogens, in particular intracellular pathogens. Because bone marrow-derived hematopoietic stem cells (HSCs), lymphoid protenitors, can give rise to NK cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that porcine c-$kit^+$ bone marrow cells (c-$kit^+$ BM cells) develop into NK cells in vitro in the presence of various cytokines [interleukin (IL)-2, IL-7, IL-15, IL-21, stem cell factor (SCF), and fms-like tyrosine kinase-3 ligand (FLT3L)]. Adding hydrocortisone (HDC) and stromal cells greatly increases the frequency of c-$kit^+$ BM cells that give rise to $CD2^+CD8^+$ NK cells. Also, intracellular levels of perforin, granzyme B, and NKG2D were determined by RT-PCR and western blotting analysis. It was found that of perforin, granzyme B, and NKG2D levels significantly were increased in cytokine-stimulated c-$kit^+$ BM cells than those of controls. And, we compared the ability of the cytotoxicity of $CD2^+CD8^+$ NK cells differentiated by cytokines from c-$kit^+$ BM cells against K562 target cells for 28 days. Cytokines-induced NK cells as effector cells were incubated with K562 cells as target in a ratio of 100 : 1 for 4 h once a week. In results, $CD2^+CD8^+$ NK cells induced by cytokines and stromal cells showed a significantly increased cytotoxicity 21 days later. Whereas, our results indicated that c-$kit^+$ BM cells not pretreated with cytokines have lower levels of cytotoxicity. Taken together, this study suggests that cytokines-induced NK cells from porcine c-$kit^+$ BM cells may be used as adoptive transfer therapy if the known obstacles to xenografting (e.g. immune and non-immune problems) were overcome in the future.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

체외 배양한 골수줄기세포를 이용한 말초신경재생에 관한 연구 (A STUDY OF THE EFFECT OF CULTURED BONE MARROW STROMAL CELLS ON PERIPHERAL NERVE REGENERATION)

  • 최병호;주석강;정재형;허진영;이승호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권6호
    • /
    • pp.492-495
    • /
    • 2005
  • The role of cultured bone marrow stromal cells (BMSCs) in peripheral nerve regeneration was examined using an established rabbit peroneal nerve regeneration model. A 15-mm peroneal nerve defect was bridged with a vein filled with BMSCs $(1{\times}10^6)$, which had been embedded in collagen gel. On the contralateral side, the defect was bridged with a vein filled with collagen gel alone. When the regenerated tissue was examined 4, 8 and 12 weeks after grafting, the number and diameter of the myelinated fibers in the side with the BMSCs were significantly higher than in the control side without the BMSCs. This demonstrates the potential of using cultured BMSCs in peripheral nerve regeneration.