• Title/Summary/Keyword: strip width

Search Result 307, Processing Time 0.032 seconds

Eigenstructure Assignment for a Looper Control System

  • Lee, Dong-Wook;Ahn, Byoung-Joon;Park, Sung-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.3-68
    • /
    • 2001
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the looper of a hot strip mill to control the tension of the strip and suggest a eigenstructure assignment method. The eigenstructure assignment is useful tool that allows the designer to satisfy damping, settling time, and mode decoupling specifications directly by choosing eigenvalue and eigenvectors. Desired eigenvalue and eigenvector are chosen to satisfy the desired responses.

  • PDF

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.791-797
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology for achieving continuous production between the steelmaking and hot rolling processes. However, the vertical horizontal rolling process has many disadvantages, e.g., large width deviations and less efficient width reduction. This study was carried out to investigate the deformation of slab by sizing press with two steps die. To do it, dog-bone and camber are discussed in width sizing process considering the deformation behavior according to the deviation of anvil velocity and the deviation of initial slab temperature. In this paper, the various causes of the sizing press phenomena are mentioned for the purpose of understanding of rolling conditions. As a result, the optimal anvil shape having a minimum-forming load is obtained by FE-simulation and ANN.

The effect on the formation of keratinized attached gingiva using free gingival graft with strip technique (Strip 형 유리치은 이식술이 부착지은 형성에 미치는 영향)

  • Lee, Dong-Yeol;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.305-318
    • /
    • 2006
  • This study was performed to evaluate the effect on the formation of keratinized attached gingiva when free gingival graft with strip technique was used. After the partial thickness flap was prepared, it was positioned apically more than 7mm using mucoperiosteal suture. At the donor site, strip was achieved with 2mm width, less than 1mm thickness, (mesiodistal teeth length + 6)$^{\ast}$2 mm length. Then, it was divided into 2 same pieces and located at the recipient bed apico-coronally with more or less 3mm interval. Follow-up check was made at 1,2,4,8,12 weeks after the operation. The results of this study were as follows : 1. The inter-strip space was mostly filled with keratinized attached gingiva. 2. The contraction of the graft was nigligible, and 92% of planned area was filled with keratinized attached gingiva. 3. The inconvenience of the patients at donor site was minimal. 4. The width of the strip was widened. In conclusion, free gingival graft using strip technique is useful to achieve the keratinized attached gingiva maximally with free gingival graft minimally and to minimize the inconvenience of donor palatal site of the patients.

Gain Scheduling for Tension Control (장력제어를 위한 게인 스케줄링)

  • 이동욱;박성한;안병준;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.505-509
    • /
    • 2002
  • The looper control of hot strip finishing mill is one of the most important control item In hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. The gain scheduling is to break the control design process into two steps. First, one designs local linear controllers based on linerizations of the nonlinear system at several different operating conditions. Second, a global nonlinear controller for the nonlinear system is obtained by interpolating.

  • PDF

A Study on the Design of a Looper Strip Controller and its Robustness for Hot Strip Mills Using ILQ Control (역최적제어(ILQ)를 이용한 열간압연시스템의 루퍼 장력제어기 설계 및 견실성 연구)

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.93-98
    • /
    • 2001
  • This paper studies on the design of an ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between each stand plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. The mathematical model for looper is firstly obtained by Taylor's linearization of nonlinear differential equations, where it is given as a linear and time invariant state-space equation. Secondly, a looper servo controller is designed by ILQ control algorithm, which is an inverse problem of LQ(Linear Quadratic optimal control) control. By tunning control gain arbitration parameters and time constants, it is shown that the ILQ looper servo controller has the performance that makes well to follow desired trajectories of both strip tension and looper angle.

  • PDF

Investigation on the integrated transfer function characteristics for the buffeting response prediction of elongated structures

  • Yi Su;Mingshui Li;Jin Di;Yang Yang;Shaopeng Li
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.399-412
    • /
    • 2023
  • Previous studies have shown that the integrated transfer function (ITF) is independent of turbulence characteristics and can be effectively applied to predict the buffeting response of elongated structures, assuming that the strip hypothesis is valid. However, existing research has not effectively identified the ITF through segment model vibration tests, and the influence of the 3D effect on the accuracy of the strip hypothesis and the characteristics of the ITF in wind tunnel tests has not been quantitatively studied. A segment model vibration measurement device that can change a test model's span-width ratio was designed in this study. An airfoil section and a streamlined box girder section structure were taken as the background, and their ITFs were effectively identified under different L/B (L denotes the turbulent integral scale and B denotes the structural width) and model span-width ratios. The influence laws of the 3D effect on the accuracy of the strip hypothesis and ITF identification in wind tunnel tests were systematically investigated. The results showed that L/B and the structural span-width ratio are two significant controlling factors that affect the accuracy of the strip hypothesis and ITF identification. The research provides an effective experimental method for accurately predicting the buffeting response of elongated structures based on ITFs identified through segment model vibration tests.

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads

  • Mohamed Emara;Ahmed Hamoda;Jong Wan Hu
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.

Development of Technology for Setting Rolling Speed of Finishing Rolling Process in Hot Strip Mill (열연 마무리 압연공정 압연롤 회전속도 설정 기술 개발)

  • Hong, Seong-Cheol;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.47-56
    • /
    • 2013
  • Rolling speed, roll gap, and cooling pattern in hot strip finishing mill process should be determined before inserting strip into roll. Such parameters are initially calculated by a mathematical set-up model. The technique to find adequate roll speed via a mathematical model has inherently limit because required working conditions are various and rolling process is nonlinear. To improve the accuracy of initial rolling speed for a finishing mill, this paper suggests a correction technology for initial rolling speed. The proposed method was implemented in hot strip mill process. As the results, the magnitude of width error in strip head-end part caused by excessive strip tension was decreased remarkably.