• Title/Summary/Keyword: strip load

Search Result 180, Processing Time 0.023 seconds

Dehumidifying Performance of Material-Saving Fin in Fin-tube Heat Exchanger (흰-관 열교환기에서 재료절감 흰의 제습특성)

  • 강희찬;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.730-738
    • /
    • 2001
  • This work discusses the pressure droop, heat and mass transfer of the finned-tube heat exchangers having 7 mm tubes and offset strips in dehumidifying applications. It focuses on the fin material saving and the reduction of pressure drop. The experiment was conducted using three times scaled-up models to simulate the performance of the prototype. Eight kinds of fins having different strips and S shape edges were tested. the area density of the strip was a major factor and its shape and the location were secondary factors on the pressure drop, the heat and mass transfer. The reduced-area fin can almost equal the non-reduced fin in the aspect of heat and mass transfer. The strip fins proposed in the present work can considerably reduce both the pressure drop and the fin material for similar thermal load.

  • PDF

Large deformation finite element analysis for automotive rubber components (자동차용 고무부품에 대한 대변형 유한요소해석)

  • Kim, H. Y.;Choi, C.;Bang, W. J.;Kim, J. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 1993
  • The objective of this study is to analyze the static and dynamic characteristics of automotive rubber components by computer simulation. Bush / rectangular type engine mounts and wind shield weather strip are analyzed by using the commercial code ABAQUS and the results are verified by experiments. Large deformation static response is analyzed in order to get the information about the deformation pattern and static stiffness of engine mounts, and about the seperation force of wind shield weather strip from body. The isothermal steady-state dynamic response of components which have been subjected to an initial static pre-load is analyzed for the dynamic stiffness of engine mount rubber components. There are good agreements between simulation and experiments. So it is possible to apply the computer simulation to the design of automotive rubber components.

  • PDF

Geometrically Nonlinear Analysis of Plates Subjected to Uniaxial Compression by Finite Strip Method (일축(一軸) 압축(壓縮)을 받는 판(板)의 유한대판법(有限帶板法)에 의한 기하학적(幾何學的) 비선형(非線型) 해석(解析))

  • Lee, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.107-115
    • /
    • 1985
  • For the finite deflection analysis of plates with initial deflections subjected to uniaxial compression, the formulation of incremental finite strip method is made and has been incorporated into a computer program. A new in plane displacement function varying along the load: direction has been derived from the out-of-plane displacement function by considering the curvature of a plate. Either incremental load type analysis or incremental displacement type analysis may be selected to solve incremental equibrium equations in the program. The following results have been obtained: 1. Incremental displacement type analysis is superior to incremental load type analysis in that the former converges more rapidly than the latter. 2. The finite strip method using the new displacement function gives as accurate results as analytical method and other finite element methods.

  • PDF

Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.123-133
    • /
    • 2018
  • Steel-concrete-steel (SCS) sandwich composite structure with corrugated-strip connectors (CSC) has the potential to be used in buildings and offshore structures. In this structure, CSCs are used to bond steel face plates and concrete. To overcome executive problems, in the proposed system by the authors, shear connectors are one end welded as double skin composites. Hence, this system double skin with corrugated-strip connectors (DSCS) is named. In this paper, finite element model (FEM) of push-out test was presented for the basic component of DSCS. ABAQUS/Explicit solver in ABAQUS was used due to the geometrical complexity of the model, especially in the interaction of the shear connectors with concrete. In order that the explicit analysis has a quasi-static behavior with a proper approximation, the kinetic energy (ALLKE) did not exceed 5% to 10% of the internal energy (ALLIE) using mass-scaling. The FE analysis (FEA) was validated against those from the push-out tests in the previous work of the authors published in this journal. By comparing load-slip curves and failure modes, FEMs with suitable analysis speed were consistent with test results.

Simulation of Plastic Collapsing Load and Deformation Behaviours(I) (소성 붕괴하중 및 변형거동 해석(1))

  • 김영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete

  • Murthy A, Ramachandra;Aravindan, M.;Ganesh, P.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.315-325
    • /
    • 2018
  • This paper predicts the flexural behaviour of reinforced concrete (RC) beams strengthened with a precast strip of ultra-high performance fiber-reinforced concrete (UHPFRC). In the first phase, ultimate load capacity of preloaded and strengthened RC beams by UHPFRC was predicted by using various analytical models available in the literature. RC beams were preloaded under static loading approximately to 70%, 80% and 90% of ultimate load of control beams. The models such as modified Kaar and sectional analysis predicted the ultimate load in close agreement to the corresponding experimental observations. In the second phase, the famous fatigue life models such as Papakonstantinou model and Ferrier model were employed to predict the number of cycles to failure and the corresponding deflection. The models were used to predict the life of the (i) strengthened RC beams after subjecting them to different pre-loadings (70%, 80% and 90% of ultimate load) under static loading and (ii) strengthened RC beams after subjecting them to different preloading cycles under fatigue loading. In both the cases precast UHPFRC strip of 10 mm thickness is attached on the tension face. It is found that both the models predicted the number of cycles to failure and the corresponding deflection very close to the experimental values. It can be concluded that the models are found to be robust and reliable for cement based strengthening systems also. Further, the Wang model which is based on Palmgren-Miner's rule is employed to predict the no. of cycles to failure and it is found that the predicted values are in very good agreement with the corresponding experimental observations.

An Experimental Study on the Bond Strengths for Concrete Filled Steel Tube Columns using a Push-Out Test (단순가력실험을 통한 콘크리트충전 강관기둥의 부착응력에 관한 연구)

  • Woo, Hae Sung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.481-487
    • /
    • 2002
  • Currently, the load transfer's mechanism from a beam to a column has yet to ve clarified in a concrete filled steel tubular (CFT) structure with a connection type of an exterior diaphragm. The loads for each floor are transferred to the concrete core from a steel beam through ha contacted face between an in-filled concrete and the interior surface of a steel tube. Thus, a Push-Out test was performed to investigate the load transfer mechanism. A total of 30 samples were tested to confirm the bond stress and/or axial load distribution between a steel tube and in-filled concrete for CFT column. The main parameters considered for this study included concrete type, steel tube-shape/length, and the effect of a weld joint wit ha backing strip for a column splice. Test results were summarized to confirm load transfer behavior between a concrete and steel tube for each experimental parameter, using the analytical approach to verify experimental results.

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.