• Title/Summary/Keyword: stretch activated channel

Search Result 16, Processing Time 0.018 seconds

Properties of stretch-activated $K^+$ channels in an G292 osteoblast-like cell (G292 세포에서 세포막 신장으로 활성화되는 $K^+$통로의 특성)

  • Lee, Sang-Gook;Jung, Dong-Keun;Suh, Duk-Joon;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.197-204
    • /
    • 2000
  • [$K^+$]-selective ion channels were studied in excised inside-out membrane patches from human osteoblast-like cells (G292). Three classes of $K^+$channels were present and could be distinguished on the basis of conductance. Conductances were $270\pm27\;pS,\;113\pm12\;pS,\;48\pm8\;pS$ according to their approximate conductances in symmetrical 140 mM KCl saline at holding potential of -80 mV It was found that the small conductance (48 pS) $K^+$channel activation was dependent on membrane voltage. In current-voltage relationship, small conductance $K^+$channel showed outward rectification, and it was activated by the positive potential inside the membrane. In recordings, single channel currents were activayed by a negative pressure outside the membrane. The membrane pressure increased $P_{open}$ of the $K^+$ channel in a pressure-dependent manner. In the excised-patch clamp recordings, G292 osteoblast-like cells have been shown to contain three types of $K^+$ channels. Only the small conductance (48 pS) $K^+$channel is sensitive to the membrane stretch. These findings suggest that a hyperpolarizing current, mediated in part by this channel, may be associated with early events during the mechanical loading of the osteoblast. In G292 osteoblast-like cells, $K^+$channel is sensitive to membrane tension, and may represent a unique adaptation of the bone cell membrane to mechanical stress.

  • PDF

Acetylcholine Induces Hyperpolarization Mediated by Activation of $K_{(ca)}$ Channels in Cultured Chick Myoblasts

  • Lee, Do-Yun;Han, Jae-Hee;Park, Jae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for $Ca^{2+}$ influx through the stretch-activated channels into the cells. Here, we showed that acetylcholine (ACh) also hyperpolarized the membrane of cultured chick myoblasts, suggesting that nicotinic acetylcholine receptor (nAChR) may be another pathway for $Ca^{2+}$ influx. Under cell-attatched patch configuration, ACh increased the open probability of $K_{Ca}$ channels from 0.007 to 0.055 only when extracellular $Ca^{2+}$ was present. Nicotine, a nAChR agonist, increased the open probability of $K_{Ca}$ channels from 0.008 to 0.023, whereas muscarine failed to do so. Since the activity of $K_{Ca}$ channel is sensitive to intracellular $Ca^{2+}$ level, nAChR seems to be capable of inducing $Ca^{2+}$ influx. Using the $Ca^{2+}$ imaging analysis, we were able to provide direct evidence that ACh induced $Ca^{2+}$ influx from extracellular solution, which was dramatically increased by valinomycin-mediated hyperpolarization. In addition, ACh hyperpolarized the membrane potential from $-12.5{\pm}3$ to $-31.2{\pm}5$ mV by generating the outward current through $K_{Ca}$ channels. These results suggest that activation of nAChR increases $Ca^{2+}$ influx, which activates $K_{Ca}$ channels, thereby hyperpolarizing the membrane potential in chick myoblasts.

High $K^+$-Induced Relaxation by Nitric Oxide in Human Gastric Fundus

  • Kim, Dae-Hoon;Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Kim, Hun-Sik;Kim, Heon;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.297-303
    • /
    • 2012
  • This study was designed to elucidate high $K^+$-induced relaxation in the human gastric fundus. Circular smooth muscle from the human gastric fundus greater curvature showed stretch-dependent high $K^+$ (50 mM)-induced contractions. However, longitudinal smooth muscle produced stretch-dependent high $K^+$-induced relaxation. We investigated several relaxation mechanisms to understand the reason for the discrepancy. Protein kinase inhibitors such as KT 5823 (1 ${\mu}M$) and KT 5720 (1 ${\mu}M$) which block protein kinases (PKG and PKA) had no effect on high $K^+$-induced relaxation. $K^+$ channel blockers except 4-aminopyridine (4-AP), a voltage-dependent $K^+$ channel ($K_V$) blocker, did not affect high $K^+$ -induced relaxation. However, N(G)-nitro-L-arginine and 1H-(1,2,4)oxadiazolo (4,3-A)quinoxalin-1-one, an inhibitors of soluble guanylate cyclase (sGC) and 4-AP inhibited relaxation and reversed relaxation to contraction. High $K^+$-induced relaxation of the human gastric fundus was observed only in the longitudinal muscles from the greater curvature. These data suggest that the longitudinal muscle of the human gastric fundus greater curvature produced high $K^+$-induced relaxation that was activated by the nitric oxide/sGC pathway through a $K_V$ channel-dependent mechanism.

Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells (사람의 골수와 제대정맥에서 유래된 중간엽 줄기세포에서 TREK1 통로의 기능적 발현)

  • Park, Kyoung Sun;Kim, Yangmi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1964-1971
    • /
    • 2015
  • Human bone marrow or human umbilical cord vein derived-mesenchymal stem cells (hBM-MSCs or hUC-MSCs) have known as a potentially useful cell type for clinical therapeutic applications. We investigated two-pore domain potassium (K2P) channels in these cells. K2P channels play a major role in setting the resting membrane potential in many cell types. Among them, TREK1 is targets of hydrogen, hypoxia, polyunsaturated fatty acids, antidepressant, and neurotransmitters. We investigated whether hBM-MSCs and hUC-MSCs express functional TREK1 channel using RT-PCR analysis and patch clamp technique. Potassium channel with a single channel conductance of 100 pS was found in hUC-MSCs and BM-MSCs and the channel was activated by membrane stretch (-5 mmHg ~ -15 mmHg), arachidonic acid ($10{\mu}M$) and intracellular acidosis (pH 6.0). These electrophysiological properties were similar to those of TREK1. Our results suggest that TREK1 is functionally present in hBM-MSCs and hUC-MSCs, where they contribute to its resting membrane potential.

The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell

  • Park, Kyung-Sun;Han, Min Ho;Jang, Hee Kyung;Kim, Kyung-A;Cha, Eun-Jong;Kim, Wun-Jae;Choi, Yung Hyun;Kim, Yangmi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.511-516
    • /
    • 2013
  • Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain $K^+$ channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from $-19.9mV{\pm}0.8$ (n=116) to $-8.5mV{\pm}1.4$ (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

  • Kyeong, Kyu-Sang;Hong, Seung Hwa;Kim, Young Chul;Choi, Woong;Myung, Sun Chul;Lee, Moo Yeol;You, Ra Young;Kim, Chan Hyung;Kwon, So Yeon;Suzuki, Hikaru;Park, Yeon Jin;Jeong, Eun-Hwan;Kim, Hak Soon;Kim, Heon;Lim, Seung Woon;Xu, Wen-Xie;Lee, Sang Jin;Ji, Il Woon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.547-556
    • /
    • 2016
  • Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing $K^+$ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward $K^+$ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing $K^+$ channels (TASK-2). NIOK in the presence of $K^+$ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.