• 제목/요약/키워드: stretch activated channel

검색결과 16건 처리시간 0.024초

Stretch-activated $K^+$ Channels in Rat Atrial Myocytes

  • Youm, Jae-Boum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.341-348
    • /
    • 2003
  • Mechanical stimuli to the cardiac myocytes initiate many biochemical and physiological events. Stretch-activated cation channels have been suggested to mediate these events. In this study, cell-attached and inside-out excised-patch clamp methods were used to identify stretch-activated cation channels in adult rat atrial myocytes. Channel openings were increased in cell-attached configuration when negative pressure was applied to the pipette, and also in inside-out excised patches by negative pressure. The channel was not permeable to $Cl^-$, $Na^+$ and $Cs^+$, but selectively permeable to $K^+$, and the degree of activation was dependent on the magnitude of negative pressure (full activation at ${\sim} -50 mmHg). In symmetrical 140 mM KCl, the slope conductance was $51.2{\pm}3$ pS between the potentials of -80 and 0 mV and $55{\pm}6$ pS between 0 and +80 mV (n=5). Glibenclamide ($100{mu}M$) or ATP (2 mM) failed to block the channel openings, indicating that it is not ATP-sensitive $K^+$ channel. Arachidonic acid ($30{mu}M$), which has been shown to activate a $K^+$ channel cooperatively with membrane stretch, did not affect the channel activity. $GdCl_3$ ($100{mu}M$) also did not alter the activity. These results demonstrate that the mechanical stretch in rat atrial myocytes activates a novel $K^+$-selective cation channel, which is not associated with other $K^+$ channels such as ATP-sensitive and arachidonic acid-activated $K^+$ channel.

Hyposmotic Cell Stretch Increases L-type Calcium Current in Smooth Muscle Cells of the Human Stomach

  • Kang, Tong-Mook;Kim, Chun-Hee;Kim, Min-Jung;Park, Myoung-Kyu;Uhm, Dae-Yong;Rhee, Jong-Chul;Rhee, Poong-Lyul
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.39-39
    • /
    • 1998
  • Stretch-activated ion channel that is open by mechanical stress applied on the cell membrane is one of the classes of ion channels. Other than stretch-activated channel itself, it has been also reported that a variety of ion channels could be modulated by a mechanical cell stretch.(omitted)

  • PDF

Mechanical Stretch-Induced Protection against Myocardial Ischemia-Reperfusion Injury Involves AMP-Activated Protein Kinase

  • Hao, Jia;Kim, Hun-Sik;Choi, Woong;Ha, Tae-Sun;Ahn, Hee-Yul;Kim, Chan-Hyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2010
  • AMP-activated protein kinase (AMPK) protects various tissues and cells from ischemic insults and is activated by many stimuli including mechanical stretch. Therefore, this study investigated if the activation of AMPK is involved in stretch-induced cardioprotection (SIC). Intraventricular balloon and aorto-caval shunt (ACS) were used to stretch rat hearts ex vivo and in vivo, respectively. Stretch preconditioning reduced myocardial infarct induced by ischemia-reperfusion (I/R) and improved post-ischemic functional recovery. Phosphorylation of AMPK and its downstream substrate, acetyl-CoA carboxylase (ACC) were increased by mechanical stretch and ACC phosphorylation was completely blocked by the AMPK inhibitor, Compound C. AMPK activator (AICAR) mimicked SIC. Gadolinium, a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of AMPK and ACC, whereas diltiazem, a specific L-type calcium channel blocker, did not affect AMPK activation. Furthermore, SIC was abrogated by Compound C and gadolinium. The in vivo stretch induced by ACS increased AMPK activation and reduced myocardial infarct. These findings indicate that stretch preconditioning can induce the cardioprotection against I/R injury, and activation of AMPK plays an important role in SIC, which might be mediated by SACs.

햄스터난자에서 신전에 의해 활성화되는 통로의 성상 (Characterization of the Stretch-Activated Channel in the Hamster Oocyte)

  • 김양미;홍성근
    • 한국수정란이식학회지
    • /
    • 제19권2호
    • /
    • pp.89-99
    • /
    • 2004
  • 음압에 의한 세포막 신전으로 열리는 Stretch-activated channel(SAC)은 세포의 부피조적, 세포의 분화, 혈관 긴장도의 조절, 호르몬 분비 조절에서 SAC 존재 유무를 확인하기 위하여 patch clamp기법을 시행하여 SAC의 조절기전과 전기생리학적인 성질을 조사하였다. 음압이 주어지기 전에는 관찰되지 않던 단일통로 전류가 -20 cm$H_2O$이하의 음압이 주어졌을 때 관찰되었다. 음압에 의해 열리는 단일통로 전류는 $Na^+$이나 $K^+$과 같은 일가 양이온이 존재할 때 관찰되었으나 대신 비투과성인 tetramethylamonium이나 meglumine과 같은 양이온으로 교환해 주면 나타나지 않았다. 이는 이 단일 통로 전류가 양이온만을 투과시키는 nonselective cationic channel(NSC)을 통하여 이동하는 stretch-activated NSC(SA-NSC)임을 시사하였다. 이 SA-NSC 전류는 적혈구나 양서류 난자에서 관찰된 SAC의 전류-전압 관계와 유사한 inward rectification 양상을 나타내었으며 PKA에 의하여 통로활성이 증가하였다. 햄스터 난자에서 관찰되는 SA-NSC는 수정 전부터 2-세포 배아기까지 관찰되었으며 통로전류의 크기는 수정란과 1-세포기 배아에서 가장 크게 관찰되었으며 2-세포기 배아에서는 그 크기가 현저하게 감소하였다. 이와 같이 본 연구에서는 햄스터 난자의 발생 초기 단계에서 전기생리학적 기법을 사용하여 처음으로 SA-NSC존재를 직접 확인하였다. 세포 항상성 유지에 필수적인 이 통로의 일반적인 속성으로 미루어 보아, 햄스터 난자의 수정 전후 난자의 활성과 초기 배아 분화 및 발달에 필수적인 역할을 할 것으로 생각된다.}$1.50개였다. 또한 배란된 성숙난자의 채란 율은 각각 70.2, 74.7 및 54.3%로서 41~50시간째에 회수하였을 때가 가장 낮았다. 두당 회수율에 있어서도 8.25${\pm}$1.34, 8.87${\pm}$1.10 및 5.00${\pm}$1.30개로서 회수시간에 따른 유의적인 차이는 없었다. 회수한 난포내 미성숙 난자의 등급에 있어서 회수시간대별 1등급은 각각 24.2, 19.5 및 12.0%였으며, 2등급의 경우는 41~50시간이 4.0%로서 29~34시간과 35~40시간의 14.4% 및 16.2%보다 유의적(P<0.05)으로 낮았다. 난자의 pH 조절과 용적조절과 같은 생리적 환경 조성에 관여할 것으로 추정된다.았으며, 난포내 난자의 회수율은 투여 호르몬 및 반복사용 여부에 따른 차이는 없었다.떤 특정한 질환의 환자가 상대적으로 많을 가능성이 있으므로 국내에서의 소아 신질환의 발병형태를 보다 체계적으로 조사하고 이를 자료화하기 위해서는 개별 기관들의 연구결과만으로는 미흡하다고 생각되며, 이를 위해서는 전국적인 협동조사가 필요하다고 사료된다.9%$, 좌측 $22.2{\pm}3.9%$, 전체 $44.2{\pm}7.8%$보다 유의하게 감소되었다(p<0.01). 4) 양측성 미만성 결손을 보인 급성 신우신염시 상대적 신섭취율은 우측 $48.9{\pm}1.9%$, 좌측 $51.0{\pm}1.9%$로 대조군의 우측 $49.4{\pm}2.6%$, 좌측 $50.2{\pm}2.5%$에 비해 유의한 차이가 없었으나 절대적 신섭취율은 우측 $18.1{\pm}3.9%$,

Actin Filaments Regulate the Stretch Sensitivity of Large Conductance $Ca^{2+}$-Activated $K^+$ Channel in Rabbit Coronary Arterial Smooth Muscle Cells

  • Lin Piao;Earm, Yung-E;Wonkyung Ho
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.35-35
    • /
    • 2002
  • The large conductance $Ca^{2+}$ -activated $K^{+}$ channels ($BK_{Ca}$) in vascular smooth muscle have been considered to function as a negative feedback in pressure-induced vasoconstriction. In the present study, the function of cytoskeletons in the regulation of $BK_{Ca}$ and its stretch sensitivity was investigated. Using the inside-out patch clamp technique, we recorded single channel activities of $BK_{Ca}$ with 150 mM KCl in the bath solution (pCa=6.5).(omitted)itted)

  • PDF

Modeling of Arrhythmogenic Automaticity Induced by Stretch in Rat Atrial Myocytes

  • Youm, Jae-Boum;Leem, Chae-Hun;Zhang, Yin Hua;Kim, Na-Ri;Han, Jin;Earm, Yung-E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.267-274
    • /
    • 2008
  • Since first discovered in chick skeletal muscles, stretch-activated channels (SACs) have been proposed as a probable mechano-transducer of the mechanical stimulus at the cellular level. Channel properties have been studied in both the single-channel and the whole-cell level. There is growing evidence to indicate that major stretch-induced changes in electrical activity are mediated by activation of these channels. We aimed to investigate the mechanism of stretch-induced automaticity by exploiting a recent mathematical model of rat atrial myocytes which had been established to reproduce cellular activities such as the action potential, $Ca^{2+}$ transients, and contractile force. The incorporation of SACs into the mathematical model, based on experimental results, successfully reproduced the repetitive firing of spontaneous action potentials by stretch. The induced automaticity was composed of two phases. The early phase was driven by increased background conductance of voltage-gated $Na^+$ channel, whereas the later phase was driven by the reverse-mode operation of $Na^+/Ca^{2+}$ exchange current secondary to the accumulation of $Na^+$ and $Ca^{2+}$ through SACs. These results of simulation successfully demonstrate how the SACs can induce automaticity in a single atrial myocyte which may act as a focus to initiate and maintain atrial fibrillation in concert with other arrhythmogenic changes in the heart.

햄스터 난자의 Stretch-activated channel의 특성과 수정 후 변화

  • 김양미
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 1998년도 제4차 학술발표대회 및 정기총회
    • /
    • pp.53-54
    • /
    • 1998
  • 햄스터 난자에서 관찰되는 SAC의 활동은 30mmHg 이내의 음압자극에 대하여 잘 관찰되었으며 단일통로의 크기나 open time에 따라 4종류로 구분될 수 있었다. SAC 활동은 PKA에 의하여 활성이 조절되었으며 수정 후 할구분할이 진행될수록 SAC 전도도가 작은 통로로 전환되어 발생 초기 SAC 활도양상이 특징적인 변화가 관찰되었다.

  • PDF

Transient Receptor Potential C4/5 Like Channel Is Involved in Stretch-Induced Spontaneous Uterine Contraction of Pregnant Rat

  • Chung, Seungsoo;Kim, Young-Hwan;Joeng, Ji-Hyun;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.503-508
    • /
    • 2014
  • Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by $1{\mu}M$ lanthanides (a potent TRPC4/5 stimulator) and suppressed by $10{\mu}M$ 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide ($1{\mu}M$) and suppressed by 2-APB ($10{\mu}M$), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.

[$Ca^{2+}$ Sensitization Mechanism in Stretch-induced Myogenic Tone

  • Kim, Jung-Sup;Ryu, Sung-Kyung;Ahn, Duck-Sun;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권1호
    • /
    • pp.33-39
    • /
    • 2002
  • It has been suggested that $Ca^{2+}$ sensitization mechanisms might contribute to myogenic tone, however, specific mechanisms have not yet been fully identified. Therefore, we investigated the role of protein kinase C (PKC)- or RhoA-induced $Ca^{2+}$ sensitization in myogenic tone of the rabbit basilar vessel. Myogenic tone was developed by stretch of rabbit basilar artery. Fura-2 $Ca^{2+}$ signals, contractile responses, PKC immunoblots, translocation of PKC and RhoA, and phosphorylation of myosin light chains were measured. Stretch of the resting vessel evoked a myogenic contraction and an increase in the intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ only in the presence of extracellular $Ca^{2+}$. Stretch evoked greater contraction than high $K^+$ at a given $[Ca^{2+}]_i.$ The stretch-induced increase in $[Ca^{2+}]_i$ and contractile force were inhibited by treatment of the tissue with nifedipine, a blocker of voltage-dependent $Ca^{2+}$ channel, but not with gadolinium, a blocker of stretch-activated cation channels. The PKC inhibitors, H-7 and calphostin C, and a RhoA-activated protein kinase (ROK) inhibitor, Y-27632, inhibited the stretch-induced myogenic tone without changing $[Ca^{2+}]_i.$ Immunoblotting using isoform-specific antibodies showed the presence of $PKC_{\alpha}$ and $PKC_{\varepsilon}$ in the rabbit basilar artery. $PKC_{\alpha},$ but not $PKC_{\varepsilon},$ and RhoA were translocated from the cytosol to the cell membrane by stretch. Phosphorylation of the myosin light chains was increased by stretch and the increased phosphorylation was blocked by treatment of the tissue with H-7 and Y-27632, respectively. Our results are consistent with important roles for PKC and RhoA in the generation of myogenic tone. Furthermore, enhanced phosphorylation of the myosin light chains by activation of $PKC_{\alpha}$ and/or RhoA may be key mechanisms for the $Ca^{2+}$ sensitization associated with myogenic tone in basilar vessels.

Carbon monoxide releasing molecule-2 suppresses stretchactivated atrial natriuretic peptide secretion by activating largeconductance calcium-activated potassium channels

  • Li, Weijian;Lee, Sun Hwa;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권2호
    • /
    • pp.125-133
    • /
    • 2022
  • Carbon monoxide (CO) is a known gaseous bioactive substance found across a wide array of body systems. The administration of low concentrations of CO has been found to exert an anti-inflammatory, anti-apoptotic, anti-hypertensive, and vaso-dilatory effect. To date, however, it has remained unknown whether CO influences atrial natriuretic peptide (ANP) secretion. This study explores the effect of CO on ANP secretion and its associated signaling pathway using isolated beating rat atria. Atrial perfusate was collected for 10 min for use as a control, after which high atrial stretch was induced by increasing the height of the outflow catheter. Carbon monoxide releasing molecule-2 (CORM-2; 10, 50, 100 μM) and hemin (HO-1 inducer; 0.1, 1, 50 μM), but not CORM-3 (10, 50, 100 μM), decreased high stretch-induced ANP secretion. However, zinc porphyrin (HO-1 inhibitor) did not affect ANP secretion. The order of potency for the suppression of ANP secretion was found to be hemin > CORM-2 >> CORM-3. The suppression of ANP secretion by CORM-2 was attenuated by pretreatment with 5-hydroxydecanoic acid, paxilline, and 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one, but not by diltiazem, wortmannin, LY-294002, or NG-nitro-L-arginine methyl ester. Hypoxic conditions attenuated the suppressive effect of CORM-2 on ANP secretion. In sum, these results suggest that CORM-2 suppresses ANP secretion via mitochondrial KATP channels and large conductance Ca2+-activated K+ channels.