• 제목/요약/키워드: stress-wave time

검색결과 210건 처리시간 0.021초

유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구 (A Study on Stress Wave Propagation by Finite Element Analysis)

  • 황갑운;조규종
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Stress Wave Technique for Detecting Decay of Structural Members in Ancient Structures

  • Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.43-50
    • /
    • 1999
  • The safety-evaluation of ancient wood structures has been executed with only visual inspection. The application of NDE(nondestructive evaluation) is required because the visual inspection has many restrictions. Among many NDE techniques, the stress wave technique was used in this research. This study focused on evaluating the extent of decay in members of ancient structures, using stress wave nondestructive technique. For application of stress wave technique to ancient structures, the threshold time which divides members into categories according to degree of decay should be determined in advance. Stress wave timer (Metriguard Model 239A) was used in this study, specimens used in this research were the members obtained from six ancient structures. All specimens were identified as Hard Pine(Pinus densiflora S. et Z. or Pinus thunbergii P.) by microscope. Each member was tested with stress wave passing radially through the pith. In this study, the stress wave time of $12{\mu}s$/cm could distinguish between sound and decayed specimens with accuracy of 77.5 percent. Also, decayed specimens could be separated into moderate and severe categories by stress wave time of $20{\mu}s$/cm. Among the three decay location groups (exterior, mixed, interior), the exterior group could be classified into sound, moderate and severe decay with the greatest accuracy. Stress wave transit time was not sensitive to small decay pockets located in interior of the member.

  • PDF

충격하중이 작용하는 평판의 동적 응력 해석 (Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate)

  • 황갑운;조규종
    • 전산구조공학
    • /
    • 제8권1호
    • /
    • pp.137-146
    • /
    • 1995
  • 본 논문에서는 최근 관심이 증대되고 있는 충격하중에 의해 시간의 흐름에 따라 형성되는 구조물의 응력분포 양상을 유한요소 해석적으로 고찰하기 위하여 동적 응력 해석 프로그램을 개발하였다. 유한요소 해석에 의하면, 종방향 응력파는 충격하중이 작용하는 방향과 동일한 방향으로 진행하며, 응력파 선단의 속도와 모양은 이론해석에 의한 결과와 같음을 알 수 있다. 또한 종파의 진행방향에 45.deg. 방향으로 전단파가 발생하여 진행함을 알 수 있으며, 전단파의 속도는 종파의 1/2이 되고, 종파보다 전단파의 강도가 큼을 알 수 있다.

  • PDF

Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations

  • Tao, Ming;Chen, Zhenghong;Li, Xibing;Zhao, Huatao;Yin, TuBing
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.285-296
    • /
    • 2016
  • The investigation of stress wave propagation in a medium with initial stress has very important application in the field of engineering. However, the previous research less consider the influence of initial stress gradient on wave propagation. In the present paper, the governing equation of wave propagation in elastic continuum material with inhomogeneous initial stress is derived, which indicated that the inhomogeneous initial stress changed the governing equation of wave propagation. Additionally, the definite problem of wave propagation in material with initial stress gradient is verified by using mathematical physics method. Based on the definite problem, the elastic displacement-time relationship of wave propagation is explored, which indicated that the inhomogeneous initial stress changed waveform and relationship of displacement-time histories. Furthermore, the spall process of blasting wave propagation from underground to earth surface is simulated by using LS-DYNA.

유한요소법에 의한 3차원 충격파 해석

  • 진성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.773-777
    • /
    • 1995
  • This thesis attempt to explore the shape of stress wave propagation of 3-dimensional stress field which is made in the process of time increment. A finite element code about 3-dimensional stress wave propagation is developed for investigating the changing shape of the fracture by the impact load. The Finite Element Code, which is the solution for the 3-dimensional stress wave analysis, based on Galerkins and Newmark- .betha. method at time increment step. The tensile stress and compressive stress become larger with the order of the middle, the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

Analysis of the 3-D Stress Wave in a Plate under Impact Load by Finite Element Method

  • Jin, Sung-Hoon;Hwang, Gab-Woon;Cho, Kyu-Zong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.5-10
    • /
    • 2001
  • This paper attempt to explore the shape of stress wave propagation of 3-dimensional stress field which in made in the process of the time increment. A finite element program about 3-dimensional stress wave propagation is developed for investigating the changing shape of the stress by the impact load. The finite element program, which is the solution for the 3-dimensional stress wave analysis, based on Galerkin and Newmark-${\beta}$ method at time increment step. The tensile stress and compressive stress become larger with the order of the middle , the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성 (Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment)

  • 남기우;박소순;안석환
    • 한국해양공학회지
    • /
    • 제17권1호
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

횡단방향(橫斷方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價) (Assessment of Incipient Decay of Radiata Pine Wood Using Stress-wave Technique in the Transverse Direction)

  • 김규혁;지우근;라종범
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.18-27
    • /
    • 1996
  • The feasibility of using stress-wave technique in the transverse direction for the assessment of early stages of decay was investigated using compression test specimens having different annual ring orientations subjected to decay by Tyromyces palustris for various time intervals. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, and stress-wave elasticity) and their percent reduction due to decay, measured by stress-wave technique in the transverse direction. The use of stress-wave technique in the transverse direction for the application of this technique to structural members in service is desirable, when considering the easiness of attachment of accelerometers of stress-wave measuring device on the surface of members and also accurate detection of localized decayed areas. In stress-wave technique in the transverse direction, stress-wave parameters measured were different according to the angles between wave propagation path and annual ring, due to the anisotropy of wood structure. Therefore, it is recommended to use percent reduction in stress-wave parameters instead of stress-wave parameters. This evaluation method using percent reduction in stress-wave parameters is ideal when it is impossible to observe annual ring orientation on the transverse surface of wood.

  • PDF

Waveform characterization and energy dissipation of stress wave in sandstone based on modified SHPB tests

  • Cheng, Yun;Song, Zhanping;Jin, Jiefang;Wang, Tong;Yang, Tengtian
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.187-196
    • /
    • 2020
  • The changeable stress environment directly affect the propagation law of a stress wave. Stress wave propagation tests in sandstone with different axial stresses were carried using a modified split Hopkinson Pressure bar (SHPB) assuming the sandstone has a uniform pore distribution. Then the waveform and stress wave energy dissipation were analyzed. The results show that the stress wave exhibits the double peak phenomenon. With increasing axial stress, the intensity difference decreases exponentially and experiences first a dramatic decrease and then gentle development. The demarcation stress is σ/σc=30%, indicating that the closer to the incident end, the faster the intensity difference attenuates. Under the same axial stress, the intensity difference decreases linearly with propagation distance and its attenuation intensity factor displays a quadratic function with axial stress. With increasing propagation distance, the time difference decays linearly and its delay coefficient reflects the damage degree. The stress wave energy attenuates exponentially with propagation distance, and the relations between attenuation rate, attenuation coefficient and axial stress can be represented by the quadratic function.

응력파를 이용한 비파괴 탐상기법의 수치해석 적용성에 관한 연구 (A Study on Applicability of Numerical Analyses for Stress Wave-Based NDE Techniques)

  • 이영준;이종세
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.504-512
    • /
    • 2003
  • Simulation programs have been developed and used as an attempt to improve the accuracy of Non-Destructive Evaluation(NDE) techniques. The applicability of these programs is very limited, however, because it is difficult to describe the delicacy of the propagation of stress waves. To investigate the applicability of the finite element analysis for stress wave-based NDE techniques numerical simulation for Impact-Echo method and SASW method is performed. The numerical studies are performed to determine the essential parameters such as contact time of impact load, mesh size and time step size. These studies show that the choice of parameter is very important for improving the accuracy and confidence of the numerical procedure and, thereby, the applicability of the numerical analysis for stress wave-based NDE techniques

  • PDF