• Title/Summary/Keyword: stress-strength reliability

Search Result 320, Processing Time 0.026 seconds

Accelerated Life Prediction for STS301L Gas Welded Joint (I) - Fillet Type - (STS301L 가스용접 이음재의 가속수명예측 (I) - Fillet Type -)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.467-474
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for railroad cars and commercial vehicles. Structures made of stainless steel sheets are commonly fabricated by gas welding, For the fatigue design of gas welded joints such as fillet joints, it is necessary to obtain design information of the stress distribution at the weldment as well as the fatigue strength of the gas-welded joints. Further, the influence of the geometrical parameters of gas-welded joints on stress distribution and fatigue strength must be evaluated. in this study, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, the ${\Delta}P-N_f$ curves were rearranged on the basis of the ${\Delta}{\sigma}-N_f$ relation for the hot-spot stresses at the gas-welded joints. These results, were used for conducting an accelerated life test(ALT) From the experiment results, an acceleration model was derived and factors were estimated. The objective is to obtain the information required for the analysis of the fatigue lifetime of fillet welded joints and for data analysis by the statistic reliability method to save time and cost and to develop optimum accelerated life prediction plans.

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Reliability Analysis of Statistical Failure Probability in Sin/Hip Si3N4 (통계적 파괴 확률에 의한 Sin/Hip 질화규소의 신뢰도 분석)

  • 유영혁;이준근;이재석
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.116-122
    • /
    • 1989
  • MOR test and concentric ring test were performed to evaluate the failure probability of sin/hip Si3N4 under uniaxial and biaxial stress state, respectively. Their failure probabilities were analized with KARA program based on Weibull PIA model and Batdorf model with 5 criteria, and they were compared with experiments. PIA model is in best accordance with experiments in higher fracture strength regions, especially for Pf 0.3. But in lower fracture strength region, none of the models predicts the failure probabilities appropriately.

  • PDF

Failure Analysis of Connecting Rod at Small End (커넥팅로드 소단부 파단의 해석)

  • 민동균;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.

Evaluation of Residual Stress on Welded Joint in API X65 Pipe Line through Nondestructive Instrumented Indentation Technique (비파괴 계장화 압입시험기법을 통한 API X65 배관 용접부 잔류응력 평가)

  • 지원재;이윤희;김우식;김철만;권동일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.547-554
    • /
    • 2003
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive instrumented indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

Evaluation of Residual Stress for Weldments Using Continuous Indentation Technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee Y. H.;Choi Y.;Kim K. H.;Kwon D.;Lee J. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.541-546
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

Evaluation of residual stress for weldments using continuous indentation technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee J. S.;Choi Y.;Kim K. H.;Kwon D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.126-129
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

  • PDF

Probabilistic failure analysis of underground flexible pipes

  • Tee, Kong Fah;Khan, Lutfor Rahman;Chen, Hua-Peng
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.167-183
    • /
    • 2013
  • Methods for estimating structural reliability using probability ideas are well established. When the residual ultimate strength of a buried pipeline is exceeded the limit, breakage becomes imminent and the overall reliability of the pipe distribution network is reduced. This paper is concerned with estimating structural failure of underground flexible pipes due to corrosion induced excessive deflection, buckling, wall thrust and bending stress subject to externally applied loading. With changes of pipe wall thickness due to corrosion, the moment of inertia and the cross-sectional area of pipe wall are directly changed with time. Consequently, the chance of survival or the reliability of the pipe material is decreased over time. One numerical example has been presented for a buried steel pipe to predict the probability of failure using Hasofer-Lind and Rackwitz-Fiessler algorithm and Monte Carlo simulation. Then the parametric study and sensitivity analysis have been conducted on the reliability of pipeline with different influencing factors, e.g. pipe thickness, diameter, backfill height etc.

Fracture Behavior of Fiber Reinforced Composites under tensile and Bending Loadings (섬유강화 복합재료의 인장 및 굽힘에 의한 파괴)

  • Nam, Gi-U;Mun, Chang-Gwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.45-52
    • /
    • 1994
  • The study was conducted to evaluate reliability of the longitudinal tensile properties of unidirectional carbon fiber reinforced composites. Two kinds of carbon fiber reinforced composites laminates were tested in order to examine the factors of variability and have the information concerning reliability improvement. Temperature dependence of the strength and its variability were investigated by means of testing at two kinds of temperatures. Statistical distributions of the respective mechanical properties were obtained from the tensile tests. As a result, strength of composites was directly proportional to the ultimate strain and was not proportional to the elastic modulus. The fracture behavior in bending of notched plate was studied for a composite material. The uniform bending tests of notched plates have been carried out for a wide range of notch radii. The experiment shows that the nominal stress at failure decreased with decreasing notch radius and it approaches a constant value when the notch radius is less than about 0.3mm. The critical maximum stress is governed by notch root radius alone in the case of a constant thickness of specimen.

  • PDF

Evaluation of Bending Fatigue Testing of Austempered Ductile Iron Spur Gears (오스템퍼링 구상흑연주철 평기어의 굽힘피로시험평가에 관한 연구)

  • Lv, Jian Hua;Zhou, Rui;Xu, Yang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.1-7
    • /
    • 2020
  • An experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears was performed using a Zwick fatigue tester. The gear material was manufactured using vertical continuous casting, resulting in the radius of the graphite grains being smaller. The stress-number of cycles curve (S-N curve) for the bending fatigue strength of the ADI spur gears thus manufactured, without any specific surface treatments, was obtained using post-processing software. It was observed that when the reliability was 50%, the allowable root stress was 610 MPa. was calculated using an analytical method as well as the finite element method, and the difference between the values calculated using the two methods is only 7%. This study provides a reliable basis to rate the reliability design of small gearboxes in automation in the future.