• Title/Summary/Keyword: stress-strain relation

Search Result 333, Processing Time 0.027 seconds

Matrix and Dyadic Representation of Stress and Strain (응력과 변형률의 Dyad와 행렬에 의한 표현)

  • Kim, Chan-Jung;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.489-495
    • /
    • 2000
  • Stress and strain in continuum mechanics have a mathematical form of the second order tensor. it is well-known that the usefulness of tensor components could be explained in a relation with coordin ates system transformation and Mohr's circle could be easily used to make a coordinate system transformation of tensors. However, Mohr's circle is applied mainly to plane problems and its use to three dimensional cases is limitedly employed. In this paper, we propose a matrix and dyadic representation of stress and strain tensors which could equivalently replace the graphical representation of second order tensors. The use of the proposed representation might provide a valuable means for the educational respects as well as research view point.

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

A Experimental Study of Stress-Strain Relation of Normal Concrete (보통 콘크리트의 응력-변형관계에 대한 실험적 연구)

  • 김화중;안상건;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.87-92
    • /
    • 1991
  • It was achieved to formulate numerically the stress-strain relationship of concrete, which is a fundamemtal factor for the Elasto-Plastic analysis of concrete structures, for normal concrete by using random statistics. As a result of experiment, in the shape of stress-strain curves of normal concrete it has approach linear from first loading to peak point, and after that point deformation increased radically and specimens were brokendown abruptly. From the multiple linear regression, and obtained the exponential equaion for stress-strain relationship of concrete as follows: $\sigma$/$\sigma$max=e(1-$\varepsilon$/$\varepsilon$max)$\varepsilon$/$\varepsilon$max

  • PDF

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

Relationship between Cone Tip Resistance and Small-Strain Shear Modulus of Cemented Sand (고결모래의 콘선단저항과 미소변형전단탄성계수 관계)

  • Lee, Moon-Joo;Lee, Woo-Jin;Kim, Jae-Jeong;Choi, Young-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.331-340
    • /
    • 2009
  • This study evaluates the relationship between cone tip resistance ($q_c$) and small-strain shear modulus ($G_{max}$) of cemented sand. For this purpose, a series of miniature cone penetration and bender element tests are performed in calibration chamber specimens with various gypsum contents. Experimental results show that both $q_c$ and $G_{max}$ of sand increase with increasing cementation level as well as relative density and vertical confining stress. However, the relative density and vertical confining stress has more significant influence on $G_{max}$ and $q_c$ of uncemented sand than those of cemented sand. It is observed that the $G_{max}/q_c$ ratio of cemented sand decreases with increasing relative density. This result means that state variables have more affect on $q_c$ than $G_{max}$ of cemented sand. Test results also show that the effect of vertical stress on $G_{max}-q_c$ relation is reduced by cementation effect.

  • PDF

Study on the Undrained Shear Strength Characteristics (반월지역 해성점토의 비배수 전단강도 특성에 관한 연구)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF

Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test (CP-Ti의 동적거동에 미치는 온도의 영향)

  • Lee, Su-Min;Seo, Song-Won;Park, Kyoung-Joon;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.

An Experimental Study on the Stress-Strain Relationship of Concrete Columns Confined with Composite Materials (복합재료에 의하여 구속된 콘크리트 기둥의 응력-변형률 관계에 대한 실험적 연구)

  • 오영준;황현복;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.194-197
    • /
    • 2003
  • The stress-strain curve of concrete confined with both lateral ties and carbon fiber sheet(CFS) is different to that of concrete confined with only lateral ties or CFS. The objective of this study is to investigate the stress-strain relation of reinforced concrete columns confined by composite material. The main variable of the specimens was the content rate of lateral ties to CFS. In the test a total 24 rectangular specimens, which are all 148$\times$148$\times$300mm size. The test results indicated that while the compressive strength of specimens confined with both lateral ties and CFS increased proportionally to the aided amount of two materials, the maximum strain of specimens depended on the larger strain of lateral ties or CFS.

  • PDF