• Title/Summary/Keyword: stress-related genes

Search Result 402, Processing Time 0.036 seconds

Expressed Sequence Tag Analysis of Antarctic Hairgrass Deschampsia antarctica from King George Island, Antarctica

  • Lee, Hyoungseok;Cho, Hyun Hee;Kim, Il-Chan;Yim, Joung Han;Lee, Hong Kum;Lee, Yoo Kyung
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.258-264
    • /
    • 2008
  • Deschampsia antarctica is the only monocot that thrives in the tough conditions of the Antarctic region. It is an invaluable resource for the identification of genes associated with tolerance to various environmental pressures. In order to identify genes that are differentially regulated between greenhouse-grown and Antarctic field-grown plants, we initiated a detailed gene expression analysis. Antarctic plants were collected and greenhouse plants served as controls. Two different cDNA libraries were constructed with these plants. A total of 2,112 cDNA clones was sequenced and grouped into 1,199 unigene clusters consisting of 243 consensus and 956 singleton sequences. Using similarity searches against several public databases, we constructed a functional classification of the ESTs into categories such as genes related to responses to stimuli, as well as photosynthesis and metabolism. Real-time PCR analysis of various stress responsive genes revealed different patterns of regulation in the different environments, suggesting that these genes are involved in responses to specific environmental factors.

Characterization of immune gene expression in rock bream (Oplegnathus fasciatus) kidney infected with rock bream iridovirus (RBIV) using microarray

  • Myung-Hwa Jung;Sung-Ju Jung
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.191-211
    • /
    • 2023
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Although, the immune responses of rock bream under RBIV infection have been studied, there is not much information at the different stages of infection (initial, middle and recovery). Gene expression profiling of rock bream under different RBIV infection stages was investigated using a microarray approaches. In total, 5699 and 6557 genes were significantly up- or down-regulated over 2-fold, respectively, upon RBIV infection. These genes were grouped into categories such as innate immune responses, adaptive immune responses, complements, lectin, antibacterial molecule, stress responses, DNA/RNA binding, energy metabolism, transport and cell cycle. Interestingly, hemoglobins (α and β) appears to be important during pathogenesis; it is highly up-regulated at the initial stage and is gradually decreased when the pathogen most likely multiplying and fish begin to die at the middle or later stage. Expression levels were re-elevated at the recovery stage of infection. Among up-regulated genes, interferon-related genes were found to be responsive in most stages of RBIV infection. Moreover, X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) expression was high, whereas expression of apoptosis-relate genes were low. In addition, stress responses were highly induced in the virus infection. The cDNA microarray data were validated using quantative real-time PCR. Our results provide novel inslights into the broad immune responses triggered by RBIV at different infection stages.

DNA Microarray Analysis of Methylprednisolone Inducible Genes in the PC12 Cells

  • Choi, Woo-Jin;Choi, Seung-Won;Kim, Seon-Hwan;Kim, Youn;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.261-263
    • /
    • 2009
  • Methylprednisolone is a synthetic glucocorticoid which is usually taken intravenously for many neurosurgical diseases which cause edema including brain tumor, and trauma including spinal cord injury. Methylprednisolone reduces swelling and decreases the body's immune response. It is also used to treat many immune and allergic disorders, such as arthritis, lupus, psoriasis, asthma, ulcerative colitis, and Crohn's disease. To identify genes expressed during methylprednisolone treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up- or down-regulated genes) which are methylprednisolone differentially expressed in neurons. Lipocalin 3 is the gene most significantly increased among 772 up-regulated genes (more than 2 fold over-expression) and Aristaless 3 is the gene most dramatically decreased among 959 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Fgb, Thbd, Cfi, F3, Kngl, Serpinel, C3, Tnfrsf4 and Il8rb are involved stress-response gene, and Nfkbia, Casp7, Pik3rl, I11b, Unc5a, Tgfb2, Kitl and Fgf15 are strongly associated with development. Cell cycle associated genes (Mcm6, Ccnb2, Plk1, Ccnd1, E2f1, Cdc2a, Tgfa, Dusp6, Id3) and cell proliferation associated genes (Ccl2, Tnfsf13, Csf2, Kit, Pim1, Nr3c1, Chrm4, Fosl1, Spp1) are down-regulated more than 2 times by methylprednisolone treatment. Among the genes described above, 4 up-regulated genes are confirmed those expression by RT-PCR. We found that methylprednisolone is related to expression of many genes associated with stress response, development, cell cycle, and cell proliferation by DNA microarray analysis. However, We think further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by methylprednisolone. The resulting data will give the one of the good clues for understanding of methylprednisolone under molecular level in the neurons.

  • PDF

Floral Pigmentation and Expression of Anthocyanin-Related Genes in Bicolored Roses 'Pinky Girl' as Affected by Temporal Heat Stress (일시적 고온 스트레스가 복색 장미 'Pinky Girl'의 화색 및 관련 유전자 발현에 미치는 영향)

  • Lee, Seul Ki;Kim, Wan Soon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.923-931
    • /
    • 2015
  • This study was conducted to investigate petal pigmentation and the expression patterns of anthocyanin-related genes in bicolored roses 'Pinky Girl' treated with temporal heat stress (THS). Cyanin accumulation in petals was correlated with floral bud development and started rapidly as floral buds began to open, defined as the $4^{th}$ stage of floral bud development ($S_4$). This stage seems to be most susceptible to petal pigmentation. The total of cyanin pigmentation at blooming was significantly decreased (by 45.5%) with exposure to THS ($39/18^{\circ}C$ for three days at $S_4$) in comparison with control. Meanwhile, the expression of anthocyanin-related genes such as CHS, CHI, F3'H, DFR, ANS, 3GT, and 5GT was relatively promoted by THS. Only F3H was less expressed (by 26.7%) with THS treatment; thus, F3H could be a key gene for bicolor promotion in 'Pinky Girl' among anthocyanin-related genes. Overall, the expression pattern of the most anthocyanin-related genes did not match the trends of cyanin pigmentation in petals. These results suggest that floral pigmentation could be associated with other mechanisms related to anthocyanin biosynthesis such as post-translational effects and regulatory genes.

Transcriptome Profiling Identifies Genes of Waterlogging-Tolerant and -Sensitive Rapeseeds Differentially Respond to Waterlogging Stress at the Flowering Stage

  • Ji-Eun Lee;Da-Hee An;Kwang-Soo Kim;Young-Lok Cha;Dong-Chil Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.229-229
    • /
    • 2022
  • Rapeseed is a crop that is waterlogging sensitive, and it is necessary to breed waterlogging tolerance varieties. Our study presents the comparative transcriptome changes in two rapeseed lines, i.e., waterlogging-tolerant (tJ8634-B-30,) and - sensitive ('EMS26') lines under control and waterlogging stress treatments at the flowering stage. RNA-sequencing analysis revealed 13,279 differentially expressed genes (DEGs) for 'J8634-B-30' and 8,682 DEGs for 'EMS26' under waterlogging stress condition compared to control. Among DEGs of 'J8634-B-30', 6,818 were up-regulated and 6,461 were down-regulated. On the other hand, among the DEGs of 'EMS26', the number of down-regulated genes (5,240) were higher than that of up-regulated genes (3,442). Gene ontology enrichment analysis showed that DEGs related to glucan metabolic, cell wall, and oxidoreductase activity were significantly changed in 'J8634-B-30'. Kyoto Encyclopedia of Genes and Genomes (KEGG)-based analysis in 'J8634-B-30' identified up-regulated DEGs being involved in MAPK signaling pathways. In addition, the DEGs belonging to mechanisms responding to waterlogging stress, i.e., plant hormones, carbon metabolism, Reactive oxygen species (ROS), Nitric oxide (NO) etc. were compared in rapeseed lines. Several DEGs including ethylene-responsive transcription factor (ERF), constitutive triple response (CTR) (in ethylene signaling pathway), monodehydroascorbate Reductase (MDAR), NADPH oxidase (in ROS pathway), cytochrome c oxidase assembly protein (COX) (in NO pathway) up-regulated in 'J8634-B-30'. These outcomes provided the valuable information for further exploring the genetic mechanism of waterlogging tolerance in rapeseed.

  • PDF

Inhibitory effects of Sargassum horneri extract against endoplasmic reticulum stress in HepG2 cells (괭생이 모자반 추출물의 소포체 스트레스 억제 효능)

  • Park, Sora;Thomas, Shalom Sara;Cha, Youn-Soo;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.53 no.6
    • /
    • pp.583-595
    • /
    • 2020
  • Purpose: This study examined the effects of Sargassum horneri extracts on palmitic acid (PA)-induced endoplasmic reticulum (ER) stress in HepG2 cells. Methods: HepG2 cells were treated with varying concentrations of S. horneri extract or PA, and the cell viability was measured by water soluble tetrazolium salts analysis. The effective induction of ER stress and the effects of S. horneri were investigated through an examination of the ER stress-related genes, such as activating transcription factor 4 (ATF4), X-box binding protein (XBP1s), C/EBP homologous protein (CHOP), and 78-kDa glucose-regulated protein (GRP78) by quantitative reverse transcription polymerase chain reaction. The expression and activation levels of unfolded protein response (UPR) associated proteins, such as inositol-requiring enzyme-1α (IRE1α), eukaryotic translation initiation factor 2 alpha submit (eIF2α), and CHOP were examined by western blot analysis. Results: The treatment with PA increased the expression of UPR associated genes significantly and induced ER stress in a 12-hour treatment. Subsequent treatment with S. horneri reduced mRNA expression of ATF4, GRP78, and XBP1s. In addition, the protein levels of phosphate (p)-IRE1α, p-elF2α, and CHOP were also reduced by a treatment with S. horneri. An analysis of sirtuin (SIRT) mRNA expression in the S. horneri and PA-treated HepG2 cells showed that S. horneri increased the levels of SIRT2, SIRT6, and SIRT7, which indicates a possible role in reducing the expression of ER stress-related genes. Conclusion: These data indicate that S. horneri can exert an inhibitory effect on ER stress caused by PA and highlight its potential as an agent for managing various ER stress-related diseases.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Screening Differential Expressions of Defense-related Responses in Cold-treated 'Kyoho' and 'Campbell Early' Grapevines

  • Ahn, Soon Young;Kim, Seon Ae;Han, Jae Hyun;Kim, Seung Heui;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Low temperature is one of the major environmental factors that affect productivity including reduced growth and budding of vines, and changes of metabolic processes in grape (Vitis spp.). To screen the specific expression of abiotic stress-related genes against cold treatment in 'Kyoho' and 'Campbell Early' grapevines, expression of various defense-related genes was investigated by RT-PCR and real-time PCR. Among the 67 genes analyzed by RT-PCR and real-time PCR, 17 and 16 types of cDNA were up-regulated, while 5 and 6 types were down-regulated in cold-treated 'Kyoho' and 'Campbell Early' grapevines, respectively. Genes encoding carotene (Cart3564 and Cart4472), chalcone isomerase (CHI), cytochrome P450 (CYP), flavonol synthase (FLS), endo-${\beta}$-glucanase precursor (Glu), glutathione peroxidase (GPX), glutathione-S-transferase (GST), leucine-rich repeats (LRR), manganese superoxide dismutase (Mn-SOD), phenylalanine ammonia lyase (PAL), polygalacturonase-inhibiting protein (PGIP), proline rich protein 2 (PRP2), small heat shock protein (sHSP), temperature induced lipocalin (TIL), and thaumatin-like protein (TLP) were up-regulated, while those encoding CBF like transcription factor (CBF1), chitinase-like protein (CLP), cold induced protein (CIP), glycerol-3-phosphate acyltransferase (GPAT), and mitogen-activated protein kinase (MAPK) were down-regulated by low temperature treatment in both in 'Kyoho' and 'Campbell Early'.

Microarray Analysis of Radiation Related Gene Expression in Mutants of Bacillus lentimorbus WJ5 Induced by Gamma Radiation (Bacillus lentimorbus WJ5의 감마선유도 돌연변이체들에서 공통으로 발현되는 방사선 관련 유전자의 microarray 분석)

  • Lee Young-Keun;Chang Hwa-Hyoung;Jang Yu-Sin;Huh Jae-Ho;Hyung Seok-Won;Chung Hye-Young
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.472-477
    • /
    • 2004
  • To study the radiation related gene expression in mutants of Bacillus lentimorbus WJ5 induced by gamm radiation, the simultaneous gene expression was analyzed by DNA micro array. We constructed DNA chips including two thousand randomly digested genome spots of B. lentimorbus WJ5 and compared its quantitative aspect with seven mutants induced by gamma radiation $(^{60}/Co)$. From the cluster analysis of gene expression pattern, totally 408 genes were expressed and 27 genes were significantly upregulated by the gamma radiation in all mutants. Especially, genes involved in repair (mutL, mutM), energy metabolism (acsA, sdhB, pgk, yhjB, citB), protease (npr), and reduction response to oxidative stress (HMM) were simultaneously upregulated. It seems that the induction of the direct and/or indirect repair related genes in mutants induced by gamma radiation could be remarkably different from the adaptive responses against acute exposure to radiation.

The Effect of Stocking Density on Stress Related Genes and Telomeric Length in Broiler Chickens

  • Beloor, J.;Kang, H.K.;Kim, Y.J.;Subramani, V.K.;Jang, I.S.;Sohn, S.H.;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.437-443
    • /
    • 2010
  • To be economically profitable, the poultry industry demands an increase in stocking density, which could adversely affect chicken welfare. The current study was performed to investigate the effect of stocking density on stress-related, heat shock protein genes (HSP70 and HSP90), 3-hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) gene and telomere length in broiler chickens. Seven-day-old broiler chickens were housed at High (0.0578 $m^2$/bird), Standard (0.077 $m^2$/bird) and Low (0.116 $m^2$/bird) stocking densities with 8 replicates each until 35 d of age. The growth performance, such as body weight gain and average daily feed intake, was found to be significantly (p<0.05) higher in the Low density group, but these parameters did not show any difference between the High and Standard groups. Other growth performance, such as feed conversion ratio and final feed intake, showed no difference among the treated groups. The expression levels of HSP70 and HMGCR were found to be elevated with the increase of stocking density. The expression level of these genes was significantly (p<0.05) higher in the High density stocked group compared with the other groups, whereas the expression levels were not significantly different between the Low and Standard groups. The expression levels of HSP90 did not show any significant changes among the treated groups. The telomeric length of the birds housed in High density was reduced significantly (p<0.05) when compared to that of the birds in Low density. These results clearly indicate that birds stocked at high density show physiological adaptive changes indicative of stress at gene transcriptional and telomere levels.