• 제목/요약/키워드: stress-related gene expression

검색결과 277건 처리시간 0.024초

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

침수 처리에 따른 B73 옥수수의 생육 반응 및 유전자 발현 분석 (Analysis of Growth Response and Gene Expression by Waterlogging Stress on B73 Maize)

  • 고영삼;김정태;배환희;손범영;이기범;하준영;김선림;백성범
    • 한국작물학회지
    • /
    • 제65권2호
    • /
    • pp.104-112
    • /
    • 2020
  • 본 실험은 옥수수(B73)에서 습해에 대한 생육 특성 변화와 습해 관련 유전자 발현 양상을 조사하여 내습성 옥수수 마커 개발을 위한 기초자료로 활용하고자 수행되었다. 1. 침수 처리구에서 초장(21.3%), 근장(50.6%), 잎 및 뿌리의 무게(21.6%), 잎의 SPAD 값(55.7%) 및 엽록소 함량(35.3%)은 감소하였고, 뿌리의 ROS의 함량은 2시간까지 46.5% 증가하다가 6시간 후에는 차이가 발생하지 않았다. 2. 뿌리 두께가 대조구에 비해 습해 처리구에서 2.5배이상 증가하였고, 뿌리 피층에 다수의 통기조직이 형성되었다. 3. 통기조직 형성(EXP1)과 에틸렌 생합성에 관련된 유전자(EREBP105) 등 습해 관련 유전자 7개가 습해 처리구에서 2.5배 이상 발현이 증가되는 것을 Microarray 분석을 통해 선별하고 RT-PCR을 통해 확인하였다.

Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways

  • Yang Zhang;Jiulong Ma;Shan Liu;Chen Chen;Qi Li;Meng Qin;Liqun Ren
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.106-116
    • /
    • 2023
  • Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.

Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis

  • Liu, Shaoli;Ma, Yimiao;Zheng, Yi;Zhao, Wen;Zhao, Xiao;Luo, Tianqi;Zhang, Jian;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.187-195
    • /
    • 2020
  • To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10℃ and 37℃, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.

시토신 탈메틸화 관련 NtROS2a 유전자 발현을 제어한 RNAi 식물의 DNA microarray 분석 (DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation)

  • 최장선;이인혜;정유진;강권규
    • Journal of Plant Biotechnology
    • /
    • 제43권2호
    • /
    • pp.231-239
    • /
    • 2016
  • 담배에서 후성유전관련 유전자의 발현연구를 위해 담배유래 시토신 DNA 탈메틸화 관련 NtROS2a 유전자를 과발현 및 RNAi 식물체를 육성하였다. 이들 형질전환체들은 고염 및 산화 스트레스하에서 내성이 증진되었으며, 다양한 표현형변이를 보였다(Lee et al. 2015). 본연구에서는 선발된 과발현 (OX1), RNAi 식물체(RNAi 13) 및 대조식물체(WT)를 이용하여 Agilent Tobacco 4 X 44K Oligo chip으로 microarray분석을 수행하였다. OX1과 RNAi13 계통을 이용하여 WT과 함께 비교 분석한 결과, 대부분 세포 내 이온 수송, 영양 공급 등과 같은 물질대사와 생물적 비생물적 스트레스 및 methylation과 관련되어 영향을 주는 유전자들에서 up-regulation 되었고, 물질대사관련 유전자와 세포 내 기능유전자의 역할을 담당하는 조효소, 그리고 다양한 스트레스 및 메틸레이션 관련 유전자군에서 또한 down-regulation되었다. 각각의 up-, down-regulation된 유전자들을 WT과 비교하여 qRT-PCR을 수행한 결과, KH domain-containing protein, MADS-box protein 및 Zinc phosphodiesterase ELAC protein 유전자들에서 발현이 높게 나타났으며, 반면에 pentatricopeptide (PPR) repeat-containing protein, histone deacetylase HDAC3 protein 및 protein kinase는 0.4 ~ 1.0-fold 발현양이 감소되었다. 따라서 DNA glycosylase를 암호화하는 NtROS2a 유전자는 demethylation과 관련되어 담배 식물체에서 다양한 전사레벨을 조절하는 것으로 판단된다.

전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼 (Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight)

  • 박상렬;김혜선;이경실;황덕주;배신철;안일평;이서현;김선태
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.149-155
    • /
    • 2017
  • 벼는 중요한 식량작물이며 지속적으로 벼흰잎마름병균, 도열병균, 잎집무늬마름병균, 바이러스 등 여러 병원균에 의해 수확량이 영향을 받고 있다. 이들 중 Xanthomonas oryzae pv. oryzae (Xoo)에 의해 유발되는 벼흰잎마름병은 세계 벼 재배지역에 발병하여 막대한 피해를 주고 있어 문제가 되고 있다. 따라서 생물적/비생물적 스트레스 저항성에 관여한다고 알려져 있는 식물 특이 전사인자 중의 하나인 NAC(NAM, ATAF, and CUC) 전사인자를 이용하여 벼의 벼흰잎마름병에 대한 저항성을 증진시키고자 하였다. 본 연구에서는 벼에서 NAC 전사인자 중 하나인 OsNAC58 유전자를 분리해 냈으며 아미노산 서열을 바탕으로 분석해 본 결과이 유전자는 5개의 NAC전사인자 group 중에서도 stress와 많은 관련이 있다고 알려진 group III에 속하였다. 또한 세포 내 위치를 확인하기 위해 GFP와 융합한 단백질을 이용해 조사해 본 세포 내에서도 핵에 위치하는 것으로 조사되었다. OsNAC58 유전자의 생물학적 기능 분석을 위해 이 유전자를 과발현시킨 벼 형질전환체를 만들었다. 동진벼를 기준으로 보다 발현이 높은 13개 계통을 선발하였으며, 이들 계통에 벼흰잎마름병균을 접종하여 병저항성을 검정한 결과 동진벼에 비해 벼흰잎마름병에 대한 저항성이 크게 증대함을 보였다. 이것은 벼의 OsNAC58 유전자가 벼흰잎마름병균 침입 시 숙주인 벼 핵 내에서 벼의 병저항성 기작을 조절하여 나타난 결과로 추정된다.

아라키돈산과 철 유도성 산화적 스트레스에 대한 금앵자(金櫻子) 열수 추출물의 간세포 보호 효능 (Water Extract of Rosa laevigata Michx. Protects Hepatocytes from Arachidonic Acid and Iron-mediated Oxidative Stress)

  • 고해리;제갈경환;송시연;김난이;강지원;변성희;김영우;조일제;김상찬
    • 대한본초학회지
    • /
    • 제30권6호
    • /
    • pp.7-15
    • /
    • 2015
  • Objectives : Rosa laevigata Michx. has been used for the treatment of renal disease in traditional Korean medicine. In this study, we investigated cytoprotective effect of R. laevigata water extract (RLE) against oxidative stress induced by arachidonic acid (AA) + iron.Methods : To evaluate the protective effects of RLE against AA + iron-induced oxidative stress in HepG2 cell, cell viability and changes on apoptosis-related proteins were assessed by MTT and immunoblot analyses. The effects of RLE on reduced glutathione level, production of reactive oxygen species and mitochondrial membrane potential were also monitored. Furthermore, to verify underlying molecular mechanism, NF-E2-related factor 2 (Nrf2) was examined by immunoblot analysis. Additionally, Nrf2 transactivation and its downstream target genes expression were also determined by reporter gene and realtime RT-PCR analyses.Results : RLE pretreatment (30-300 μg/ml) prevented cells from AA + iron-mediated cell death in a concentration dependent manner. In addition, 100 μg/ml RLE inhibited AA + iron-induced glutathione depletion, reactive oxygen species production and mitochondrial dysfunction. RLE accumulated nuclear Nrf2 and also transactivated Nrf2, which was evidenced by antioxidant response element- and glutathione S-transferase A2-driven luciferase activities and mRNA level of glutamate-cysteine ligase catalytic subunit, NAD(P)H:quinone oxidoreductase 1 and sestrin 2. Moreover, protective effect of RLE against AA + iron was abolished in Nrf2 knockout cells.Conclusions : These results indicate that RLE has the ability to protect hepatocyte against oxidative stress through Nrf2 activation.

Effects of dietary supplementation of glucose oxidase, catalase, or both on reproductive performance, oxidative stress, fecal microflora and apoptosis in multiparous sows

  • Sun, Xiaojiao;Piao, Longguo;Jin, Haifeng;Nogoy, K. Margarette C.;Zhang, Junfang;Sun, Bin;Jin, Yi;Lee, Dong Hoon;Choi, Seong-Ho;Smith, Stephen B;Li, Xiangzi
    • Animal Bioscience
    • /
    • 제35권1호
    • /
    • pp.75-86
    • /
    • 2022
  • Objective: The objective of this experiment was to investigate the effect of dietary glucose oxidase (GOD), catalase (CAT), or both supplementation on reproductive performance, oxidative stress, and apoptosis in sows. Methods: A total of 104 multiparous sows were randomly assigned to four groups (n = 26) with each group given a basal diet, basal diet plus GOD at 60 U/kg, basal diet plus CAT at 75 U/kg, and basal diet plus GOD at 60 U/kg and CAT at 75 U/kg. Sows were fed the experimental diets throughout gestation and lactation. Results: Dietary GOD supplementation increased average daily feed intake of sows and litter weight at weaning (p<0.05). Dietary CAT supplementation reduced the duration of parturition, stillbirth, and piglet mortality and increased growth performance of weaned piglets (p<0.05). Dietary GOD and CAT supplementation enhanced antioxidant enzyme activities and lessened oxidative stress product levels in plasma of sows and elevated antioxidant capacity of 14-day milk and plasma in weaned piglets (p<0.05). Dietary GOD supplementation increased fecal Lactobacillus counts and reduced Escherichia coli counts of sows (p<0.05). Compared with the basal diet, the GOD diet reduced fecal Escherichia coli counts of sows, but the addition of CAT did not reduce Escherichia coli counts in the GOD diet. Dietary GOD and CAT supplementation reduced the apoptosis rate of the liver, endometrium, and ovarian granulosa cells in sows (p<0.05). In the liver, uterus, and ovary of sows, the mRNA expression of caspase-3 and caspase-9 was downregulated by dietary GOD and CAT supplementation (p<0.05). Conclusion: Dietary GOD and CAT supplementation could improve the antioxidant capacity of sows and weaned piglets, and alleviate hepatic, ovarian and uterine apoptosis by weakening apoptosis-related gene expression. Glucose oxidase regulated fecal microflora of sows, but supplementation of CAT to GOD could weaken the inhibitory effect of GOD on fecal Escherichia coli.

Study on hydroxy fatty acid contents changes and physiological responses under abiotic stresses in transgenic Camelina

  • Kim, Hyun-Sung;Lee, Hyun-Sook;Lim, Hyun-Gyu;Park, Won;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Ahn, Sung-Ju
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.191-191
    • /
    • 2017
  • Hydroxy fatty acid (HFA) is an important industrial resource that known to be extracted from seeds of Castor or Lesquerella. However, mass production of HFA from those crops are difficult because of their behavior or life cycle. In this study, we applied HFA synthesis related gene FAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT on bioenergy crop Camelina sativa. Furthermore, we determined NaCl or cold stress tolerance changes of transgenic Camelina. RcFAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT genes were cloned into multigene expression vector which is engineered with seed specific promoter of FAE1 or Napin. Combination of HFA genes multi-expression vector constructs were divided into Set3 (RcFAH12, RcPDAT1-2, RcLPCAT), Set4 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT), and Set5 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT, RcPDCT). Transgenic HFA synthesis Camelina plants were generated using agrobacterium-mediated vacuum infiltration system. Results of fatty acid composition of T1 transgenic Camelina seeds analyzed by GC-MS showed 9.5, 9.0, and 13.6 % of HFA contents in Set3#6, Set4#8, and Set5#10, respectively. Therefore, seeds of T2 generation were harvest from Set5#10 which is shown highest HFA contents, and, 17.7, 8.1 and 10.5 % of HFA contents were determined in Set5#10-5, Set5#10-8, and Set#10-10, respectively. However, 7.7% of C18:2 and 22.3 % of C18:3 among unsaturated fatty acids were decreased in Set5#10-5 than WT. Meanwhile, we confirmed abiotic stress responses in T2 transgenic Camelina Set5#10-5 and Set5#10-10 under 0, 100, 150, and 200 mM NaCl or 25, 15, and $10^{\circ}C$ temperature for 5 weeks. Both Set5#10-5 and Set5#10-10 showed lower growth in height than WT in control and NaCl condition. Growth of leaf length and width were similar in WT and Set5#10-10 but lower in Set5#10-5 under NaCl stress. Number of opened flowers showed that both transgenic Camelina were lower than WT under normal condition. But, WT and Set5#10-10 showed similar opened flower number in 100 and 200 mM NaCl. In cold stress, 15 and $10^{\circ}C$ treatment for 5 weeks did not showed significant changes in between WT and both transgenic lines even they showed different growth rate in control condition. Taken together, growth and development are delayed by expression of exogenous HFA related genes in transgenic lines but relative abiotic stress sensitivity is similar with WT. In conclusion, reduced C18:2 or C18:3 fatty acid composition of seed by HFA synthesis is resulted from lack of resource supplement for development at seedling stage but it is not affect NaCl and cold stress tolerance.

  • PDF

Genomic Organization and Isoform-Dependent Expression Patterns of Wap65 genes in Various Tissues during Immune Challenges in the Mud Loach Misgurnus mizolepis

  • Kim, Yi Kyung;Cho, Young Sun;Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제17권4호
    • /
    • pp.471-478
    • /
    • 2014
  • Genomic organization, including the structural characteristics of 5'-flanking regions of two 65-kDa protein (WAP65) isoform genes associated with warm temperature acclimation, were characterized and their transcriptional responses to immune challenges were examined in the intestine, kidney and spleen of the mud loach (Misgurnus mizolepis; Cypriniformes). Both mud loach Wap65 isoform genes displayed a 10-exon structure that is common to most teleostean Wap65 genes. The two mud loach Wap65 isoforms were predicted to possess various stress- and immune-related transcription factor binding sites in their regulatory regions; however, the predicted motif profiles differed between the two isoforms, and the inflammation-related transcription factor binding motifs, such as NF-${\kappa}B$ and CREBP sites, were more highlighted in the Wap65-2 isoform than the Wap65-1 isoform. The results of qRT-PCR indicated that experimental immune challenges using Edwardsiella tarda, lipopolysaccharide or polyI:C induced the Wap65-2 isoform more than Wap65-1 isoform, although modulation patterns in response to these challenges were tissue- and stimulant-dependent. This study confirms that functional diversification between the two mud loach Wap65 isoforms (i.e., closer involvement of Wap65-2 in the acute phase of inflammation and innate immunity) occurs at the mRNA level in multiple tissues, and suggests that such differential modulation patterns between the two isoforms are related to the different transcription factor binding profiles in their regulatory regions.