• Title/Summary/Keyword: stress-energy tensor

Search Result 33, Processing Time 0.02 seconds

Sound Source Investigation of Outer Rotor BLDC Motor (외부회전자형 BLDC 전동기의 소음원 규명)

  • Lee, Chang-Min;Shin, Young-Hun;Moon, Jung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.208-213
    • /
    • 2012
  • With great advancement of the automobile functions, environmental factors become important performances, especially noise. This paper investigates noise sources of outer rotor type BLDC motor using in the air-conditioner of the automobiles. To this end, this paper is analyzed two viewpoints, structural and electromagnetic causes. Structural analysis is conducted through modal test and analysis. For modal analysis, 3D finite element analysis is carried out using commercial program ansys. Electromagnetic causes are analyzed from local force that is computed by Maxwell stress tensor method. Local force excites structure of motor directly. Finally, correlation analysis is performed to determine effect between noise causes.

A Magnetostrictive Force and Vibration Mode Analysis of 3 kW BLDC Motor by a Magneto-Mechanical Coupling Formulation

  • Shin, Pan-Seok;Cheung, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • This paper proposes a method to calculate magnetostrictive forces, displacement, and vibration modes of a large-scale Brushless DC(BLDC) motor by using a magneto-mechanically strong coupling formulation. The force is calculated using the energy method with magnetostrictive stress tensor. The mechanical vibration modes are also analyzed by using the principle of Hamilton and the calculated magneto-elastic forces acting on the surfaces of the stator. To verify the algorithm, 3 MW BLDC motor is simulated, and the forces, displacements, and vibration modes are calculated. The result shows that the mechanically stressed core has more deformation or displacements than those of the normal condition.

Prediction of a Backward-Facing Step Flow with Modified Turbulence Models (수정 난류모델에 의한 후향계단 유동예측)

  • 명현국;백인철;한화택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

Influence of a weak superposed centripetal flow in a rotor-stator system for several pre-swirl ratios

  • Nour, Fadi Abdel;Rinaldi, Andrea;Debuchy, Roger;Bois, Gerard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.49-59
    • /
    • 2012
  • The present study is devoted to the influence of a superposed radial inflow in a rotor-stator cavity with a peripheral opening. The flow regime is turbulent, the two boundary layers being separated by a core region. An original theoretical solution is obtained for the core region, explaining the reason why a weak radial inflow has no major influence near the periphery of the cavity but strongly affects the flow behavior near the axis. The validity of the theory is tested with the help of a new set of experimental data including the radial and tangential mean velocity components, as well as three components of the Reynolds stress tensor measured by hot-wire anemometry. The theoretical results are also in good agreement with numerical results obtained with the Fluent code and experimental data from the literature.

Analysis of Interior-Type Permanent Magnet Synchronous Motor Using Finite Element Method (유한 요소법에 의한 매입형 영구 자석 동기 전동기의 특성 해석)

  • Kim, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.723-734
    • /
    • 1992
  • In this paper, the characteristics of IPMSM(Interior-type Permanent Magnet Synchronous Motor) are simulated using 2-D. finite element method. This paper deals with the following characteristics : air gap flux density considering skew, back e.m.f., torque and inductance. Back e.m.f. is calculated using the flux obtained from the vector potential of FEM solution. Torque is calculated using improved Maxwell stress tensor method and current angle which is obtained from the controller. Direct axis inductance and quadrature axis inductance are also calculated using energy perturbation method. Computed results are found in satisfactory agreement with experimental ones. This method also can be applied for the computation and analysis of the characteristics of SPMSM, current-excited synchronous motor and reluctance motor.

Stress Field and Deformation Energy of Inhomogeneous Preeipitates (비균질성 석출물 의 응력장 과 변형에너지 I)

  • 최병익;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.31-39
    • /
    • 1985
  • Using the tensor elastic Green functions an exact integral equation is formulated for two anisotropic precipitates embedded in an infinite anisotropic matrix; the matrix is subjected to an applied strain field or the precipitates undergo a stress-free transformation strain. This equation is reduced to an infinite system of algebraic equations by expanding the strains in Taylor series about the two points within each precipitate, and an approximation of the strain distributions within the two spherical precipitates is obtained by truncating the higher order terms. Since the present method requires no symmetry conditio between the two shperical precipitates, it is possible to obtain the strain distribution within the precipitates when the elastic constants and/or the sizes of the precipitates are different each other. The strains are expanded about arbitrary points, giving more accurate distributions of the strains than those presented elsewhere. The present method can be directly estended to the case of more than two spherical precipitates.

Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy (등가탄성에너지법에 의한 콘크리트의 연속체 손상모델)

  • 이기성;변근주;송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.172-178
    • /
    • 1995
  • Concrete contains numerous microcracks at initially poured. The growth and propagation of nicrockacsk are believed tc finally incur the faiure of concrete. These processings are understood as a damage. Damage IS represented as a second-order tensor and crack is treated as a con tinuum phenomenon. In this paper, damage is characterized through the effective stress concept together with the hypothesis of elastic energy equivalence, and damage evolution law and constitutive equation of a damage model are derived by using the Helmholtz frte eriergy and the dissipation potential by means of the thermodynamic principles. The constitutive equation of the model includes the effects of elasticity, anisotropic damage and plasticity of concrete. There are two effective tangent stiffness tensors in this model : one is for elastic-darnage and the other for plastic damage. For the verification of the model, finite element analysis was performed for the analysis of concrete subjec:t to uniaxial and biaxial loading and the results obtained were compared with test results.

Design Optimization for the Magnetic Engine Valve Actuator (엔진 밸브 자기 구동기의 설계 최적화)

  • Soh, Hyun-Jun;Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.

Dynamic analysis of a transversely isotropic non-classical thin plate

  • Fadodun, Odunayo O.;Borokinni, Adebowale S.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is made of hyperelastic John's material and its constitutive law is obtained by taken the Frechect derivative of the highlighted energy function with respect to the geometry of deformation. The three-dimensional equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff's stress tensor. In the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity provide ample opportunity to reveal important phenomena which classical models often fail to apprehend.

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.