• Title/Summary/Keyword: stress-dependent

Search Result 2,149, Processing Time 0.031 seconds

Sub­surface Stress Distribution beneath the Contact Surface of the Gear Teeth for Two Profile Models (치면 프로파일 모델에 따른 기어 치면 내부의 응력 분포)

  • 구영필;오명석;김형자;김영대
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.357-364
    • /
    • 2003
  • The sub­surface stress field beneath the gear's contact surface caused by the contact pressure in lubricated condition has been calculated. To evaluate the influence of the clearance shape on the stress field, two kinds of tooth profile models were chosen. One is the conventional cylinder contact model and the other is the new numerical model. Love's rectangular patch solution was used to obtain the sub­surface stress field. The analysis results show that the sub­surface stress is quite dependent on both the contact pressure and the profile model. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

Sub-surface Stress Analysis on Spur Gear Teeth in the EHL Conditions

  • Koo, Young-Pil;Kim, Tae-Wan;Cho, Yong-Joo
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2004
  • The sub-surface stress field beneath the gear's contact surface caused by the surface pressure in lubricated condition is analyzed. To evaluate the influence of the clearances between a gear tooth and a pinion tooth on the stress field, two kinds of tooth profile models - conventional cylinder contact model and new numerical model - were chosen. Kinematics of the gear is taken into account to obtain the numerical model which is the accurate geometric clearances between a gear tooth and a pinion tooth. Transient elasto-hydrodynamic lubrication (EHL) analysis is performed to get the surface pressure. The sub-stress field is obtained by using Love's rectangular patch solution. The analysis results show that the sub-surface stress is quite dependent on both the surface pressures and the profile models. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

Repeated restraint stress promotes hippocampal neuronal cell ciliogenesis and proliferation in mice

  • Lee, Kyounghye;Ko, Hyuk Wan
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.203-210
    • /
    • 2018
  • Stress severely disturbs physiological and mental homeostasis which includes adult neurogenesis in hippocampus. Neurogenesis in hippocampus is a key feature to adapt to environmental changes and highly regulated by multiple cellular signaling pathways. The primary cilium is a cellular organelle, which acts as a signaling center during development and neurogenesis in adult mice. However, it is not clear how the primary cilia are involved in the process of restraint (RST) stress response. Using a mouse model, we examined the role of primary cilia in repeated and acute RST stress response. Interestingly, RST stress increased the number of ciliated cells in the adult hippocampal dentate gyrus (DG). In our RST model, cell proliferation in the DG also increased in a time-dependent manner. Moreover, the analysis of ciliated cells in the hippocampal DG with cell type markers indicated that cells that were ciliated in response to acute RST stress are neurons. Taken together, these findings suggest that RST stress response is closely associated with an increase in the number of ciliated neurons and leads to an increase in cell proliferation.

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.

Proposal of a Time-dependent Method for Determining the Forming Limit of Sheet Metal (판재의 성형한계 결정을 위한 시간의존적 방법의 제안)

  • Kim, S.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Most domestic and international standards on the forming limit diagram (FLD) including ISO 12004-2, use a 'position-dependent method,' which determines the forming limit from a strain distribution measured on the specimen after necking or fracture. However, the position-dependent method has inherent problems such as the incidence of asymmetry of a strain distribution, the estimation of missing data near fracture, the termination time of test, and the deformation due to the new stress equilibrium after a fracture, which is blamed for causing sometimes a significant lab-to-lab variation. The 'time-dependent method,' which is anticipated to be a new international standard for evaluating the forming limit, is expected to greatly improve these intrinsic disadvantages of the position-dependent method. It is because the time-dependent method makes it possible to identify and accurately determine the forming limit, just before the necking point from the strain data as continuously measured in a short time interval. In this study, we propose a new time-dependent method based on a Gaussian fitting of strain acceleration with the introduction of 'normalized correlation coefficient.' It has been shown in this study that this method can determine the forming limit very stably and gives a higher value, which is in comparison with the results of the previously studied position-dependent and time-dependent methods.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Chilling Tolerance of Photosynthesis in Plants is Dependent on the Capacity to Enhance the Levels of the Xanthophyll Cycle Pigments in Response to Cold Stress

  • Kim, Hyun-Ju;Kang, In-Soon;Lee, Chin-Bum;Lee, Choon-Hwan;Cho, Sung-Ho;Moon, Byoung-Yong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Plants possess the ability to dissipate the excitation energy for the protection of photosynthetic apparatus from absorbed excess light. Heat dissipation is regulated by xanthophyll cycle in thylakoid membranes of chloroplasts. We investigated the mechanistic aspects of xanthophyll cycle-dependent photoprotection against low-temperature photoinhibition in plants. Using barley and rice as chilling-resistant species and sensitive ones, respectively, chilling-induced chlorophyll fluorescence quenching, composition of xanthophyll cycle pigments and mRNA expression of the zeaxanthin epoxidase were examined. Chilled barley plants exhibited little changes in chlorophyll fluorescence quenching either of photochemical or non-photochemical nature and in the photosynthetic electron transport, indicating low reduction state of PS II primary electron acceptor. In contrast to the barley, chilled rice showed a marked decline in those parameters mentioned above, indicating the increased reduction state of PS II primary electron acceptor. In addition, barley plants were shown to have a higher capacity to elevate the pool size of xanthophyll cycle pigments in response to cold stress compared to rice plants. Such species-dependent regulation of xanthophyll cycle activity was correlated with the gene expression level of cold-induced zeaxanthin epoxidase. Chilled rice plants depressed the gene expression of zeaxanthin epoxidase, whereas barley increased its expression in response to cold stress. We suggest that chilling-induced alterations in the pool size of xanthophyll cycle pigments related to its capacity would play an important role in regulating plant's sensitivity to chilling stress.

  • PDF

Effect of low intensity pulsed ultrasound in activating the mitogen-activated protein kinase signaling pathway and inhibition inflammation cytokine synthesis in chondrocytes

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • Objective: Low intensity pulsed ultrasound (LIPUS) has been shown to accelerate cell proliferation and tissue healing in both animal models and clinical trials. However, details of the clinical effects of LIPUS have not been well characterized. The aim of this study was to investigate the effect of LIPUS on mitogen-activated protein kinase (MAPK) activation in rat articular chondrocytes. Design: Cross-sectional study. Methods: Chondrocyte were cultured in six well cell culture plates for 72 hours at $37^{\circ}C$ with 5% $CO_2$, and then exposed to LIPUS at 1.5 MHz frequency and $30-mW/cm^2$ power. Changes in chondrocyte activities were evaluated in response to oxydative stress in dose-dependent (0 and 300 uM) and time-dependent (0-24 hr) manner. The cell viability were analyzed using MTT [3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide]. The expression of p38 MAPK was measured using western blotting. Results: Oxidative stress was induced in rat chondrocytes using hydrogen peroxide ($H_2O_2$). The cell viability was decreased in chondrocytes after the $H_2O_2$ dose and time-dependent treatment. The p38 MAPK phosphorylation occurred at a significantly increased rate after $H_2O_2$ treated (p<0.05). Expression of p38 MAPK was decreased in the p38 inhibitor groups compared with the oxidative stress-induced chondrocyte damage via the p38 MAPK signaling pathways (p<0.05). Conclusions: It could be concluded that LIPUS can inhibit oxidative stress-induced chondrocyte damage via the p38 MAPK signaling pathways.

The Levels of Psychosocial Stress, Job Stress and Related Factors of Medical Doctors Practicing at Local Clinics (일부 개원의사들의 사회심리적 스트레스 및 직무 스트레스 관련 요인)

  • Kang, Moon-Kuk;Kim, Jang-Rak;Jeong, Baek-Geun;Park, Ki-Soo;Kam, Sin;Hong, Dae-Yong;Kang, Yune-Sik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.177-184
    • /
    • 2007
  • Objectives : This study was conducted to investigate the levels of psychosocial stress, job stress and their related factors among medical doctors practicing at local clinics. Methods : A survey using a self administered questionnaire was administered to 1,456 doctors practicing at private clinics via post for 2 months (2006. 1 - 2006. 3). Psychosocial stress, job stress, demographic factors, job related factors and health related behaviors were investigated. Among the eligible study population, the respondents were 428 doctors (29.4%). Results : The average scores of psychosocial stress and job stress were 2.19 and 3.13, respectively. The levels of psychosocial stress and job stress were statistically lower in older respondents, those who worked shorter or who were more satisfied with their job, and those with higher socioeconomic status. The level of psychosocial stress was related with smoking status, drinking status and exercise. The level of job stress was related with smoking status and exercise. In multiple linear regression analysis using psychosocial stress as a dependent variable, age, working hours per day, job satisfaction and perception on socioeconomic status were significant independent variables. In analysis using job stress as a dependent variable, age, working hours per day and job satisfaction were significant independent variables. Conclusions : Stress affects the doctor-patient relationship, productivity and overall health level of people. Therefore, it is important to manage and relieve the stress of doctors. It is suggested that more advanced studies on stress level and related factors and ways to improve the stress and health related behaviors of medical doctors should be conducted.