• Title/Summary/Keyword: stress variation

Search Result 1,580, Processing Time 0.029 seconds

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Residual Stress Variation by Isothermal and Isochronal Annealing in Cold Rolled Alloy 600 (냉간 압연된 Alloy 600에서 등온 및 등시 소둔에 의한 잔류응력의 변화)

  • Kim, Sung Soo;Park, Duck Geun;Cheong, Young Moo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.462-467
    • /
    • 2011
  • In order to understand why annealing at $480^{\circ}C$ for several hour prevents the initiation of PWSCC, the residual stress variation with isothermal annealing at $480^{\circ}C$ and isochronal annealing between 480 and $800^{\circ}C$ in cold rolled Alloy 600 was investigated by the XRD method. The isothermal annealing decreased residual stress slightly in the rolling direction but not in the transverse direction, whereas the isochronal annealing for two hours increased residual stress. It seemed that the decrease in residual stress by isothermal annealing was due to lattice contraction by an ordering reaction because the isothermal annealing increased hardness. The effects of the isochronal annealing could be interpreted as the influence of thermal expansion and a disordering reaction.

Estimation and Application of Reliability Values for Strength of Material Following Gamma Distribution (감마분포를 따르는 재료강도의 신뢰도 예측과 응용)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.223-230
    • /
    • 2012
  • The strength of brittle material has commonly been characterized by a normal distribution or Weibull distribution, but it may fit the gamma distribution for some material. The use of an extreme value distribution is proper when the largest values of a set of stresses dominate the failure of the material. This paper presents a formula for reliability estimation based on stress-strength interference theory that is applicable when the strength of material is distributed like a gamma distribution and the stress is distributed like an extreme value distribution. We verified the validity of the equation for the reliability estimation by examining the relationships among the factor of safety, the coefficient of variation, and the reliability. The required minimum factor of safety and the highest allowable coefficient of variation of stress can be estimated by choosing an objective reliability and estimating the reliabilities obtained for various factors of safety and coefficients of variation.

Effect of a Diet Program for Adult Women on Body Weight Loss and Health Related Indices (다이어트 프로그램이 성인여성의 체중감량과 건강관련지수에 미치는 효과)

  • Park, Heejung;Cho, Seongkyung;Koo, Jea Ok
    • Korean Journal of Community Nutrition
    • /
    • v.18 no.6
    • /
    • pp.599-610
    • /
    • 2013
  • This study was carried out to analyze the effect of a diet program for adult women on weight loss, BMI, eating habits, sleeping habits, health related indices. The subjects was 415 participants of the 10 weeks (20 time participation program). The data was collected by basic somatometry and HRV (Heart Rate Variability) / APG (Accelerated Plethysmograph) Analyzer. The average age, height, weight and BMI were 28.6 years, 162.1 cm, 62.8 kg and 23.9 $kg/m^2$, respectively. Their body types by BMI were under weight (1.2%), normal (45.8%), overweight (24.8%), mild obesity (22.7%) and obesity (5.5%). There were significant reductions of average weight (4.6 kg) and average BMI (1.75 $kg/m^2$) on the 10th week. There were positive changes in vascular age (50.4%), stress index (44.6%), fatigue index (43.9%), health index (54.5%) of the subjects during the program. There was a meaningful difference of the average variation for the vascular age, stress index, fatigue index, and health index between two groups; one improving the eating habit and the other did not (p<0.05), and also there was a meaningful difference of the average variation for the fatigue index in both groups improving the sleeping habit (p<0.05), but was not a meaningful difference of the average variation for the vascular age, stress index, and health index between two groups. There was a meaningful difference of the average variation for the vascular age, stress index, fatigue index, and health index between two groups improving both eating and sleeping habit (p<0.05). In conclusion, the weight loss program was effective on the weight loss and BMI reduction and health related indices.

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.

Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

Influence of Analysis Models on Variation of Ground Response during Earthquake (지반응답해석기법의 차이에 의한 지반응답 분산도 평가)

  • Kim, Sung-Ryul;Choi, Jae-Soon;Kim, Soo-Il;Park, Dae-Young;Park, Seong-Yong;Kim, Ki-Poong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

The Characteristics of Plasma Polymerized Carbon Hardmask Film Prepared by Plasma Deposition Systems with the Variation of Temperature

  • Yang, J.;Ban, W.;Kim, S.;Kim, J.;Park, K.;Hur, G.;Jung, D.;Lee, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.1-381.1
    • /
    • 2014
  • In this study, we investigated the deposition behavior and the etch resistivity of plasma polymerized carbon hardmask (ppCHM) film with the variation of process temperature. The etch resistivity of deposited ppCHM film was analyzed by thickness measurement before and after direct contact reactive ion etching process. The physical and chemical properties of films were characterized on the Fourier transform infrared (FT-IR) spectroscope, Raman spectroscope, stress gauge, and ellipsometry. The deposition behavior of ppCHM process with the variation of temperature was correlated refractive index (n), extinction coefficient (k), intrinsic stress (MPa), and deposition rate (A/s) with the hydrocarbon concentration, graphite (G) and disordered (D) peak by analyzing the Raman and FT-IR spectrum. From this experiment we knew an optimal deposition condition for structure of carbon hardmask with the higher etch selectivity to oxide. It was shown the density of ppCHM film had 1.6~1.9 g/cm3 and its refractive index was 1.8~1.9 at process temperature, $300{\sim}600^{\circ}C$. The etch selectivity of ppCHM film was shown about 1:4~1:8 to undoped siliconoxide (USG) film (etch rate, 1300 A/min).

  • PDF

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.