• 제목/요약/키워드: stress transfer

Search Result 1,112, Processing Time 0.032 seconds

첨단 헤드업 디스플레이 장치용 비구면 자유형상 금형의 초정밀 가공에 관한 연구 (A study on the ultra precision machining of free-form molds for advanced head-up display device)

  • 박영덕;장태석
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.290-296
    • /
    • 2019
  • 차량용 HUD는 자동차 전면 유리창에 안전 운전과 편의 운전 관련 다양한 정보를 표시해 주는 장치로 중요한 역할을 수행한다. 본 논문에서는 증강현실 기술에 적용이 가능한 대면적 비구면 자유형상 미러를 가공하기 위해 초정밀 가공기를 이용하여 가공을 실시하였고 그 결과를 측정하였다. 초정밀 다이아몬드 절삭은 정밀도가 높을 뿐만 아니라 표면 거칠기와 잔류 응력을 낮게 할 수 있어서 우수한 표면 무결성을 갖는 고급 부품의 생산에 유리하다. 또한 비구면 자유 형상의 몰드를 사용함으로써 광학 전달 함수의 개선, 왜곡 경로의 감소 및 특수 이미지 필드 곡률의 실현과 같은 장점을 얻을 수 있다. 이와 같은 비구면 자유형상 금형을 가공하기 위한 방법으로는 초정밀가공기를 이용한 다이아몬드 절삭 방법을 사용하였으며, 제작된 비구면 자유형상 미러 금형의 평가는 비구면 형상 측정기를 이용하여 실시하였다. 이러한 방법에 의해 $1{\mu}m$ 이하의 형상 정밀도(PV)와 $0.02{\mu}m$ 이하의 표면 거칠기(Ra)를 갖는 비구면 자유형상 금형을 제작할 수 있었다.

무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측 (High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV)

  • 이상래;김재환;김재훈
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.111-117
    • /
    • 2019
  • 본 논문은 경량 및 고효율 레큐퍼레이터를 구성하는 0.1 mm 이하의 두께를 지닌 전열판의 용접부에 대한 실험적 연구이다. 특히 해당 용접부에 대한 수명을 알아내기 위해 고온환경에서 피로특성을 실험을 통하여 알아내기로 하였다. 실험은 레큐퍼레이터의 소재로 주로 선정되는 두가지 재질에 대해 (STS347, AL20-25+nb) 실시하였으며, 시편은 실제 제작에 사용되는 방법과 ASTM에서 권고하는 규격을 준용하여 제작하였다. 그리고 상온과 고온에서 해당 시료의 기계적 특성을 평가하고자, 기계적 물성치를 시험하는 MTS-810 과 고온환경을 부여하기 위한 고온로를 이용하였다. 시험은 각 시편에 대해 상온 및 고온 환경에서 인장시험을 실시하였으며, 나타난 인장강도의 50%, 40%, 30%, 20% 그리고 10% 에 해당하는 하중을 응력비 0.1로 설정하여 피로시험을 시행하였다. 마지막으로 실험을 통해 나타난 피로수명 특성을 레큐퍼레이터의 운전조건에서 발생하는 하중에 따르는 응력과 비교하여 무인기 시스템이 요구하는 운전시간에 대비하여 해당 용접부들의 수명을 평가하였다.

마그네슘 합금 표면의 지르코니아 분말 레이저 소결과정에서 조사 패턴이 접합 계면 품질에 미치는 영향 (Effect of Laser Processing Patterns on the Bonding Interface Quality during Laser Sintering of Magnesium Alloys with Zirconia)

  • 윤상우;김주한
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.51-57
    • /
    • 2021
  • The quality of the ceramic sintered coating on a metal surface through laser surface treatment is affected by the laser irradiation pattern. Depending on the laser irradiation pattern, the amount of residual stress and heat applied or accumulated on the surface increases or decreases, affecting the thickness attained in the ceramic sintering area. When the heat energy accumulated in the sintering area is high, the ceramic and the metal alloy melt and sufficiently mix to form a homogeneous and thick bonding interface. In this study, the thermal energy accumulation in the region sintered with zirconia was controlled using four types of laser processing patterns. The thickness of the diffusion region is analyzed by laser-induced breakdown spectroscopy of Mg-ZrO2 generated by laser sintering zirconia powder on the magnesium alloy surface. On the basis of the analysis of the Mg and Zr present in the sintered region through LIBS, the effect of the irradiation pattern on the sintering quality is confirmed by comparing and analyzing the heat and mass transfer tendency of the diffusion layer and the degree of diffusion according to the irradiation pattern. The derived diffusion coefficients differed by up to 9.8 times for each laser scanning pattern.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

신축이음용 벨로우즈의 거동특성에 관한 연구 (A Study on the Behavioral Characteristics of Bellows for Expansion Joints)

  • 정두형;진도훈;김병탁
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.52-58
    • /
    • 2020
  • Bellows are corrugated mechanical elements used to absorb displacements or vibrations caused by temperature changes, pressure, earthquakes, waves, etc., which are welded to flanges or directly connected to pipes. Expansion joint bellows must not only be designed to sufficiently withstand the internal pressure of the pipes but also accommodate axial, transverse, and rotational deformations to minimize the transfer of forces to the sensitive components of the system. Bellows have various types of corrugations, but U-type bellows are most commonly used in general piping systems. In this study, the behavior of U-shaped one-, two-, and three-ply bellows with the same inner diameter under pressure and forced displacement was analyzed using the finite element method. The results were compared with the design formula in the Expansion Joint Manufacturers Association (EJMA)'s code. Manufacturer data were used for the applied pressure and force displacement. The behavioral characteristics of the three cases were compared via structural analysis because the stress levels will be different for each model, even if they have the same inner diameter. Since the analytical model has an axisymmetric shape but displacement occurs in the transverse direction, the finite element model was composed of 1/2 of the whole model, and ANSYS Workbench 17.2 was employed for the analysis.

고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 (Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature)

  • 이정환;김한수
    • 한국전산구조공학회논문집
    • /
    • 제35권3호
    • /
    • pp.159-166
    • /
    • 2022
  • 본 논문에서는 유한요소해석 프로그램 Abaqus를 이용하여 고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 절차를 제시하고 해석 결과를 비교·분석하였다. 기둥에 축하중과 화재가 가해지는 상황을 해석에 반영하기 위해 Abaqus에서 제공하는 순차 결합 열-응력 해석을 사용하였다. 우선 콘크리트 단면에 대한 열전달 해석을 수행하여 검증한 뒤, 이를 3차원 요소로 확장하고 구조해석과 결합하여 해석을 수행하였다. 해석 과정에서 수렴성 및 정확성에 영향을 미치는 인장 증강 효과와 초기 불완전성을 고려하여 모델링하였다. 해석 결과는 74개 실험 데이터와 비교하였으며, 내화시간을 기준으로 평균 6%의 오차를 나타냄에 따라 유한요소해석을 통해 철근콘크리트 기둥의 내화성능을 예측할 수 있게 되었다.

SNCM439재질의 전차용 엔진클러치 암플랜지 개발 (Development of Engine Clutch Female Flange for Tank Using SNCM439 Material)

  • 김중선;권대규;안석영
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.67-73
    • /
    • 2021
  • Tanks are key weapons of ground combat that are equipped with powerful weapons and have strong protective bodies. One tank component, the engine clutch flange, is located in the part of the tank where the engine and transmission are installed, and it is a key part of the power transfer and shutoff. The engine clutch flange transmits high power to secure the mobility of the tank; thus, it must have high strength and hardness. In addition, high durability and safety must be ensured because tank operations must exclude concerns about damage. In this study, an engine clutch female flange for tanks made of SNCM439 was developed. The 2D design used AutoCAD programs, and the 3D shape design used CATIA programs. The structural analysis was conducted using ANSYS. The mesh grid has a tetrahedron shape and is created by adding a mid-side node. After the mechanical properties and constraints of SNCM439 were entered, the changes in the safety factor, total deformation, and Von-Mises stress were identified according to the increase in torque. Prototype processing was performed to verify the engine clutch female flange for the tank. To determine the productivity of the product, the cutting processing time was measured when processing the prototypes. Based on the results of measuring the cutting processing time, it is concluded that research is needed to improve productivity because MCT slot cutting processing is time consuming.

Effect of methyl donors supplementation on performance, immune responses and anti-oxidant variables in broiler chicken fed diet without supplemental methionine

  • Savaram, Venkata Rama Rao;Mantena, Venkata Lakshmi Narasimha Raju;Bhukya, Prakash;Paul, Shyam Sunder;Devanaboyina, Nagalakshmi
    • Animal Bioscience
    • /
    • 제35권3호
    • /
    • pp.475-483
    • /
    • 2022
  • Objective: Methionine (Met) is involved in methyl group transfer besides protein synthesis. As the availability is limited and cost is high for synthetic Met, reductions in its inclusion in broiler diet may be possible by supplementing the low Met diets with methyl donors (MD) like betaine (Bet), folic acid (FA), vitamin B12 (B12), and biotin (Bio). An experiment was conducted to study the effects of supplementing the MD on performance (average daily gain [ADG], daily feed intake, feed efficiency [FE]), anti-oxidant variables, immune responses and serum protein concentration in broilers fed sub-optimal concentrations of dietary Met. Methods: Maize-soybean meal diet was used as control (CD). Different MD like Bet (0.2%), B12 (0.1 mg), FA (4 mg), or Bio (1.5 mg/kg) were supplemented to basal diet (BD) having no supplemental Met. The BD without MD was kept for comparison. Each diet was fed ad libitum to 10 replicates of 25 chicks in each from 1 to 42 d of age. Results: At the end of experiment, the ADG in MD group was higher than BD and lower than CD. The FE improved with FA or Bet compared to the BD. Breast meat weight was higher in Bet compared to the BD, while it was intermediate between BD and CD in other groups. The lipid peroxidation reduced with Bio, B12, or Bet, while the glutathione peroxidase activity improved with Bio or B12 compared to the BD. Lymphocyte proliferation improved with Bet compared to the BD. The serum protein concentrations increased with FA, Bio, or Bet compared to those fed BD. Conclusion: It can be concluded that the ADG can be improved partially with supplementation of MD while the FE improved with FA or Bet. Some MD also reduced the stress indices and improved immune responses compared to the BD fed broilers.

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

Load-transferring mechanism and evaluation theory of bolt with single and double nut fasteners

  • Qiyu Li;Dachang Zhang;Hao Xu;Yibi Li;Weiqun Chen;Kaixuan Zhang
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.261-276
    • /
    • 2023
  • The use of the ordinary double nut (i.e., ODN) composed of a master nut (i.e., M-nut) and a slave nut (i.e., S-nut) is a highly efficient method to prevent bolts loosening. A novel double nut (i.e., FODN) composed of a master nut (i.e., M-nut) and flat slave nut (i.e., FS-nut) is proposed to save raw materials. The bolt fastening tests with single nut, ODN and FODN are performed to investigate the preload and counterbalance forces. Corresponding finite element analysis (FEA) models are established and validated by comparing the preload with the experimental results. The load-bearing capacity, the extrusion effect, and the contact stress of each engaged thread for ODN and FODN are observed by FEA. The experimental and simulated results revealed that the bolt fastening with double-nut has different load-transferring mechanisms from single-nut. Nevertheless, for double-nut/bolt assemblies, the FS-nut can provide load transfer that is like that of the S-nut, and the FODN is a reasonable and reliable fastening method. Furthermore, based on the theory of Yamamoto, a formula considering the extrusion effect is proposed to calculate the preload distribution of the double-nut, which is applicable to varying thicknesses of slave-nuts in double-nut/bolt assemblies.