• Title/Summary/Keyword: stress singularity factor the order of the singularity

Search Result 16, Processing Time 0.02 seconds

Viscoelastic Stress Analysis of Polymeric Thin Layer Under Moisture Absorption (수분 흡수로 인해 고분자 박막에서 발생하는 점탄성 응력 해석)

  • 이상순;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.25-29
    • /
    • 2003
  • This paper deals with the stress singularity induced at the interface corner between the elastic substrate and the viscoelastic thin film as the polymeric film absorbs moisture from the ambient environment. The boundary element method is employed to investigate the behavior of interface stresses. The order of the singularity is obtained numerically for a given viscoelastic model. It is shown that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Analysis of Stresses Induced in a Polymer Coating Layer due to Temperature Change (온도변화에 대한 고분자 코팅 층에 발생하는 응력 해석)

  • 박명규;이상순;서창민
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.72-76
    • /
    • 2003
  • This paper deals with the stress singularity developed in a polymer layer that is coated to a concrete surface, due to temperature change. The boundary element method is employed to investigate the behavior of interface stresses. The polymeric layer is assumed to be a linear viscoelastic material, and is thermorheologically simple. The order of the singularity is obtained, numerically, for a given viscoelastic model. Numerical results exhibit the relaxation of interface stresses, and large gradients are observed in the vicinity of the free surface. Results show that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model.

Boundary Element Analysis of Singular Stresses in a Viscoelastic Thin Film due to Moisture Absorption (수분 흡수로 인해 점탄성 필름에 발생하는 특이 응력의 경계요소해석)

  • Lee, Sang-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.685-690
    • /
    • 2000
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. Th e time domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

Analysis of Moisture Stresses Induced in Polymeric Thin Film (고분자 박막에서 발생하는 수분응력 해석)

  • 이상순
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.137-142
    • /
    • 2002
  • This paper deals with the stress singularity induced at the interface corner between the elastic substrate and the viscoelastic thin film as the polymeric film absorbs moisture from the ambient environment. The boundary element method is employed to investigate the behavior of Interface stresses. The order of the singularity is obtained numerically for a given viscoelastic model. It is shown that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Analysis of Thermal Stresses Developed in Bonding Interface of Semiconductor Chip (반도체 칩의 접착계면에 발생하는 열응력 해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.437-443
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate subjected to uniform temperature change. The viscoelastic film has been assumed to be thermorheologically simple. The time-domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. The order of the free-edge singularity has been obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Boundary Element Analysis of Interface Stresses in a Thin Film Due to Moisture Absorption (수분 흡수로 인해 얇은 필름에 발생하는 계면 응력의 경계요소해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. The rime-domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time,'while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Boundary Element Analysis of Stress Singularity at the Interface Corner of Viscoelastic Adhesive Layer Bonded Between Rigid Adherends (강체모재들을 결합하고 있는 점탄성 접착재층의 계면모서리에서 발생하는 응력특이성의 경제요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • This paper concerns the stress singularity at the interface corner of the viscoelastic adhesive layer bonded between rigid adherends, subjected to a uniform transverse tensile strain. The characteristic equation is derived in the Laplace transformed space, following Williams, and the transformed characteristic equation is inverted analytically into real time space for the viscoelastic model considered here. The order of the singularity is obtained numerically. The time-domain boundary element method is employed to investigate the nature of stresses along the interface. Numerical results show that the order of the singularity increases with time while the free-edge stress intensity factors are relaxed with time.

  • PDF

Analyses of Stress Singularities on Bonded Interfaces in the IC Package by Using Boundary Element method (경계요소법을 이용한 반도체 패키지의 응력특이성 해석)

  • Park, Cheol-Hee;Chung, Nam-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.94-102
    • /
    • 2007
  • Applications of bonded dissimilar materials such as large scale integration (LSI) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in LSI. In order to investigate stress singularities on the bonded interface edges and delamination of die pad and resin in the IC package. In this paper, stress singularity factors(${\Gamma}_i$) and stress intensity factors($K_i$) considering thermal stress in the IC package were analyzed by using the 2-dimensional elastic boundary element method(BEM).

Prediction of Crack Propagation Path Using Boundary Element Method in IC Packages (반도체 패키지의 경계요소법에 의한 균열진전경로의 예측)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • Applications of bonded dissimilar materials such as integrated circuit(IC) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in bonded joints of dissimilar materials. In order to investigate the IC package crack propagating from the edge of die pad and resin, the fracture parameters of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method(BEM). From these results, crack propagation direction and path by thermal stress in the IC package were numerically simulated with boundary element method.

Evaluation of stress intensity factor for a crack normal to bimaterial interface using cubic isoparametric finite elements (3차 등매개 유한요소를 이용한 이종재료 접합면에 수직인 균열의 응력확대계수 평가)

  • Lim, Won-Gyun;Jeong, Gyu-Cheol;Song, Chi-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.206-214
    • /
    • 1998
  • When a crack meets bimaterial interface stress singularity depends on the elastic constants of the adjacent materials. In the present study we are going to describe the finite element formulation for problems with a crack to be embedded in the stiffer material$({\mu}_2/{\mu}_1)$. The cubic isoparametric singular element, represented by adequately shifting the mid-side nodes adjacent to the crack tip is constructed to enclose the crack tip. An alternative method to obtain the optimal position of the mid-side nodes of cubic isoparametric elements is presented. In addition, a proper definition for the stress intensity factors of a crack normal to bimaterial interface is provided. It is based upon near a tip displacement solutions. Models for numerical analysis are two dimensional elastic bodies with a through crack under plain strain. The results obtained are compared with the previous solutions.