• Title/Summary/Keyword: stress shock proteins

Search Result 160, Processing Time 0.022 seconds

Characterization of a Cadmium-resistant Yeast Strain in Response to Cadmium or Heat Shock Stress

  • Huh, Nam-Eung;Choi, Nack-Shick;Seo, Young-Kyo;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 1994
  • A varient strain of budding yeast, Hansenula anomala B-7 which had been identified to be highly resistant to cadmium ions, were observed by transmission electron microscopy. It was shown that the cells accumulated excess amounts of cadmium ions throughout inside the cell rather than on the cell surface. The cell growth in response to cadmium or heat shock stress has also been investigated. It was observed that the cells precultured in the presence of 500 $\mu$ g/ml of Cd ions grew slower than those precultured at 1, 000 $\mu$ g/ml of the metal ions, when they were cultivated in the media containing 1, 000 $\mu$g/ml of the metal ions. Heat shock, however, stimulated the cell growth transiently, when the cells were allowed to grow in the presence of 1, 000 $\mu$g/ml of the metal ions. But the cells given heat shock for more than 100 min received permanent damage to growth. Effects of both stresses on budding rate was also examined. It revealed that the stresses did not change the budding ratio much, which was contradictory to that observed from the same budding yeast, Saccharomyces cerevisiae. Furthermore, the cells treated with 1, 000 $\mu$g/ml of the metal ions not only induced, but also switched off the expression of several new proteins. Some of the cadmium stress-inducible proteins were estimated to be also induced by heat shock stress.

  • PDF

Heat stress and stallion fertility

  • Muhammad Shakeel;Minjung Yoon
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.683-697
    • /
    • 2023
  • The threat posed by increased surface temperatures worldwide has attracted the attention of researchers to the reaction of animals to heat stress. Spermatogenesis in animals such as stallions is a temperature-dependent process, ideally occurring at temperatures slightly below the core body temperature. Thus, proper thermoregulation is essential, especially because stallion spermatogenesis and the resulting spermatozoa are negatively affected by increased testicular temperature. Consequently, the failure of thermoregulation resulting in heat stress may diminish sperm quality and increase the likelihood of stallion infertility. In this review, we emphasize upon the impact of heat stress on spermatogenesis and the somatic and germ cells and describe the subsequent testicular alterations. In addition, we explore the functions and molecular responses of heat shock proteins, including HSP60, HSP70, HSP90, and HSP105, in heat-induced stress conditions. Finally, we discuss the use of various therapies to alleviate heat stress-induced reproductive harm by modulating distinct signaling pathways.

Proline Analogs, L-Azetidine-2-Carboxylic Acid and 3,4-Dehydro-L-Proline, Induce Stress Response in Drosophila Kc Cells

  • Moon, Sung-Joon;Han, Ching-Tack
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.201-208
    • /
    • 1998
  • Amino acid analogs, like other inducers of stress response, induce the synthesis of stress proteins in mammalian cells. In this study, Drosophila Kc cells, in which translation is tightly controlled during stress response, was treated with proline analogs, L-azetidine-2-carboxylic acid (AzC) and 3,4-dehydro-L-proline (dh-P). Kc cells exposed to AzC or dh-P induced the synthesis of several proteins which had the same molecular weights as known heat shock proteins. However, in Kc cells, normal protein synthesis still continued in the presence of amino acids analogs unlike in heat-shocked cells. For the induction of stress response, the incorporation of dh-P into the protein was not essential, but the incorporation of AzC was. The stress protein synthesis was regulated mainly at the transcriptional level by AzC, whereas it was regulated by dh-P at the transcription level and possibly posttranscription level. During recovery, the stress protein synthesis stopped sooner in analog-treated cells than in heat-shocked cells even though the accumulated amount of Hsp70 was much less in proline analogstreated cells. It could be concluded that the proline analogs, AzC and dh-P, induced stress response through a different mechanism from heat shock.

  • PDF

Ethanol Extract of Ulmus pumila Ameliorates Heat Stress through the Induction of Heat Shock Proteins Expression in RAW264.7 Macrophage Cells

  • dela Cruz, Joseph;Byambaragchaa, Munkhzaya;Choi, Seok-Geun;Hwang, Seong-Gu
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.147-154
    • /
    • 2014
  • Heat stress is a significant burden to animal production in most areas of the world. Improving our knowledge of physiological and metabolic mechanisms of acclimation may contribute to the development of procedures that may help to maintain health and production efficiency under hot temperature. The effect of Ulmus pumila (UP) extract in inducing Heat Shock Proteins (HSPs) expression in heat-stressed RAW264.7 macrophage cells was investigated. Cell viability assay showed a dose dependent increase in cells after treatment with UP for 24 hours. RT-PCR and western blot analysis showed that increasing concentrations of UP induce the expression of Heat Shock Factor 1 (HSF1) and dose dependently upregulated the expression of Heat shock protein 70 (Hsp70) and Hsp90. LPS-induced nitric oxide was dose-dependently reduced while phagocytic activity greatly recovered with UP treatment. These data demonstrated that UP can be a potential candidate in the development of cytoprotective agent against heat stress.

HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS (골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구)

  • Rim, Jae-Suk;Kim, Byeong-Ryol;Kwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Suk;Jun, Sang-Ho;Woo, Hyeon-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.

Heat Shock Proteins as Molecular Chaperons in Neuropsychiatry (열충격 단백질의 신경정신의학적 의의와 중요성)

  • Oh, Dong-Hoon;Yang, Byung-Hwan;Choi, Joonho
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • Recent researches have shown that important cellular-based autoprotective mechanisms are mediated by heat-shock proteins(HSPs), also called 'molecular chaperones'. HSPs as molecular chaperones are the primary cellular defense mechanism against damage to the proteome, initiating refolding of denatured proteins and regulating degradation after severe protein damage. HSPs also modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli. HSPs are induced by almost every type of stresses including physical and psychological stresses. Our nervous system in the brain are more vulnerable to stress and damage than any other tissues due to HSPs insufficiency. The normal function of HSPs is a key factor for endogenous stress adaptation of neural tissues. HSPs play an important role in the process of neurodevelopment, neurodegeneration, and neuroendocrine regulation. The altered function of HSPs would be associated with the development of several neuropsychiatric disorders. Therefore, an understanding of HSPs activities could help to improve autoprotective mechanism of our neural system. This paper will review the literature related to the significance of HSPs in neuropsychiatric field.

  • PDF

Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria

  • Heine, Michelle;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell's danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species.

Heat Shock Proteins in Heat Stressed Chickens (닭의 열 스트레스와 열충격단백질)

  • Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.219-227
    • /
    • 2020
  • As the earth's average temperature rises, crop and livestock productions are at risk. Chickens are sensitive to heat stress, and increased temperatures may have adverse effects on their production performance and animal welfare. Reliable stress measurements are crucial for heat stress adaptation. Therefore, various measurement methods and biomarkers are used to evaluate poultry stress levels. Heat shock proteins (HSPs) are heat sensitive biological markers that are highly expressed under stress, thereby acting as a cellular thermometer. HSPs also have chaperone activity, which protects cells from heat stress. This review details the role of HSP70 as a molecular chaperone and biomarker for heat stress, which is important for breeding climate-adaptable, thermo-tolerant poultry.

Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans

  • Al-Amin, Mohammad;Kawasaki, Ichiro;Gong, Joomi;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.163-168
    • /
    • 2016
  • Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

Effects of a mild heat treatment on mouse testicular gene expression and sperm quality

  • Zhao, Jun;Zhang, Ying;Hao, Linlin;Wang, Jia;Zhang, Jiabao;Liu, Songcai;Ren, Bingzhong
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.267-274
    • /
    • 2010
  • The decrease in sperm quality under heat stress causes a great loss in animal husbandry production. In order to reveal the mechanism underlying the sperm quality decrease caused by heat stress, we first established a mild heat-treated mouse model. Then, the sperm quality was identified. Further, the testicular proteome profile was mapped and compared with the control using 2D electrophoresis and mass spectrometry. Finally, the differential expressed proteins involved in the heat stress response were identified by real-time PCR and Western blotting. The results showed that heat stress caused a significant reduction in mouse sperm quality (P<0.05). Further, 52 protein spots on the 2D gel were found to differ between the heat-shocked tissues and the control. Of these spots, some repair proteins which might provide some explanation for the influence on sperm quality were found. We then focused on Bag-1, Hsp40, Hsp60 and Hsp70, which were found to be differently expressed after heat shock (P<0.05). Further analysis in this heat-shocked model suggests numerous potential mechanisms for heat shock-induced spermatogenic disorders.