• Title/Summary/Keyword: stress sensitivity

Search Result 847, Processing Time 0.03 seconds

The Analysis of Fatigue Damage in Structure under Variable Load (변동 하중을 받는 구조물에서의 피로 파손 해석)

  • 한문식;조재웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.85-93
    • /
    • 2004
  • The variable fatigue load is simulated in this study, The stability and the life of the material are analyzed theoretically by the program of Ansys workbench. These results are successfully applied to the practical structures to predict the prevention of fracture and the endurance, The life and the damage on the every part of the fatigue specimen can be predicted. As the available lives are compared for every loading variation, the rainflow and damage matrix results can be helpful in determining the effects of small stress cycles in any loading history. The rainflow and damage matrices illustrate the possible effects of infinite life. The safety and stability of fatigue specimen according to the variable load can be estimated by using the results of this study.

Development of Optimal Accelerated Life Test Plans for Weibull Distribution Under Intermittent Inspection

  • Seo, Sun-Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.89-106
    • /
    • 1989
  • For Weibull distributed lifetimes, this paper presents asymptotically optimal accelerated life test plans for practical applications under intermittent inspection and type-I censoring. Computational results show that the asymptotic variance of a low quantile at the design stress as optimal criterion is insensitive to the number of inspections at overstress levels. Sensitivity analyses indicate that optimal plans are robust enough to moderate departures of estimated failure probabilities at the design and high stresses as input parameters to plan accelerated life tests from their true values. Monte Carlo simulation for small sample study on optimal accelerated life test plans developed by the asymptotic maximum likelihood theory is conducted. Simulation results suggest that optimal plans are satisfactory for sample size in practice.

  • PDF

Current sensor application of giant magnetoimpedance in amorphous materials (교류자기저항효과를 이용한 비정질 리본 전류센서)

  • Rheem, Y.W.;Kim, C.G.;Kim, C.O.;Kim, G.D.;Park, Y.T.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.11-13
    • /
    • 2002
  • The performance of DC current sensor based on giant magnetoimpedance (GMI) effect in amorphous ribbon has been tested. The ribbon after field annealing shows the maximum GMI ratio of 30 % at 100 kHz measuring frequency. In the sensor element of sample wound the circular form, GMI ratio and sensitivity are decreased due to internal stress. The sensor voltage output increases with applied DC current up to 1 A with a good linearity, of which direction can be known due to asymmetric characteristics.

  • PDF

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

Inelastic behavior of standard and retrofitted rectangular hollow sectioned struts -I: Analytical model

  • Boutros, Medhat K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.491-504
    • /
    • 2000
  • This paper is a presentation of a physical model for the elastic-partly plastic behavior of rectangular hollow section pinned struts subjected to static cyclic axial loading and the evaluation of the compressive strength of retrofitted damaged struts. Retrofitting is achieved by welding stiffening plates along the webs of damaged struts. The shape of the elastic and permanent deformations of the strut axis satisfy the conditions at the ends and midspan. Continuous functions of the geometric variables of stress distributions in the yielded zone are evaluated by interpolation between three points along each partly plastic zone. Permanent deformations of the partly plastic region are computed and used to update the shape of the unloaded strut. The necessity of considering geometric nonlinearity is discussed. The sensitivity of the results to the location of interpolation points, the shape of the permanent deformation and material hysteretic properties is investigated.

A two-step method for the optimum design of trusses with commercially available sections

  • Oral, Suha;Uz, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • A two-step method is presented for the optimum design of trusses with available sections under stress and Euler buckling constraints. The shape design of the truss is used as a means to convert the discrete solution into a continuous one. In the first step of the method, a continuous solution is obtained by sizing and shape design using an approximate polynomial expression for the buckling coefficients. In the second step, the member sizes obtained are changed to the nearest available sections and the truss is reconfigured by using the exact values for the buckling coefficients. The optimizer used is based on the sequential quadratic programming and the gradients are evaluated in closed form. The method is illustrated by two numerical examples.

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF

THE EFFECT OF POSTULATED FLAWS ON THE STRUCTURAL INTEGRITY OF RPV DURING PTS

  • Jhung, Myung-Jo;Choi, Young-Hwan;Chang, Yoon-Suk;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.647-654
    • /
    • 2007
  • Postulation of flaws, one of the most important areas in RPV integrity assessment, significantly affects the results. In the present work, several parameters, such as orientation, underclad vs. surface cracking, crack depth and shape, etc., are postulated and parametric studies are performed to investigate the influence of the flaw parameters on the structural integrity assessment of the reactor pressure vessel during pressurized thermal shock. The influence of individual parameters describing the crack is evaluated based on sensitivity study results.

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF

Low Cycle Fatigue Behaviors of Type 316 Stainless Steel in $310^{\circ}C$ Water Environment

  • Kim, Byoung-Koo;Cho, Hyun-Chul;Kim, In-Sup;Jang, Chang-Heui;Jung, Dae-Yul;Byeon, Seong-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.467-468
    • /
    • 2005
  • Low cycle fatigue test results of Type 316 stainless steel in $310^{\circ}C$ water environment can be summarized as follows. 1. Cyclic stress response of Type 316 stainless steel shows negative strain rate sensitivity, primary hardening and secondary hardening. 2. Fatigue life in $310^{\circ}C$ water environment was shorter than fatigue life in room temperature air environment. This was because of water environment and temperature effects.

  • PDF