• Title/Summary/Keyword: stress score

Search Result 1,371, Processing Time 0.019 seconds

Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET (동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발)

  • Lee, Byeong-Il;Lee, Jae-Sung;Lee, Dong-Soo;Kang, Won-Jun;Lee, Jong-Jin;Kim, Soo-Jin;Choi, Seung-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.486-491
    • /
    • 2004
  • Purpose: factor analysis and independent component analysis (ICA) has been used for handling dynamic image sequences. Theoretical advantages of a newly suggested ICA method, ensemble ICA, leaded us to consider applying this method to the analysis of dynamic myocardial $H_2^{15}O$ PET data. In this study, we quantified patients' blood flow using the ensemble ICA method. Materials and Methods: Twenty subjects underwent $H_2^{15}O$ PET scans using ECAT EXACT 47 scanner and myocardial perfusion SPECT using Vertex scanner. After transmission scanning, dynamic emission scans were initiated simultaneously with the injection of $555{\sim}740$ MBq $H_2^{15}O$. Hidden independent components can be extracted from the observed mixed data (PET image) by means of ICA algorithms. Ensemble learning is a variational Bayesian method that provides an analytical approximation to the parameter posterior using a tractable distribution. Variational approximation forms a lower bound on the ensemble likelihood and the maximization of the lower bound is achieved through minimizing the Kullback-Leibler divergence between the true posterior and the variational posterior. In this study, posterior pdf was approximated by a rectified Gaussian distribution to incorporate non-negativity constraint, which is suitable to dynamic images in nuclear medicine. Blood flow was measured in 9 regions - apex, four areas in mid wall, and four areas in base wall. Myocardial perfusion SPECT score and angiography results were compared with the regional blood flow. Results: Major cardiac components were separated successfully by the ensemble ICA method and blood flow could be estimated in 15 among 20 patients. Mean myocardial blood flow was $1.2{\pm}0.40$ ml/min/g in rest, $1.85{\pm}1.12$ ml/min/g in stress state. Blood flow values obtained by an operator in two different occasion were highly correlated (r=0.99). In myocardium component image, the image contrast between left ventricle and myocardium was 1:2.7 in average. Perfusion reserve was significantly different between the regions with and without stenosis detected by the coronary angiography (P<0.01). In 66 segment with stenosis confirmed by angiography, the segments with reversible perfusion decrease in perfusion SPECT showed lower perfusion reserve values in $H_2^{15}O$ PET. Conclusions: Myocardial blood flow could be estimated using an ICA method with ensemble learning. We suggest that the ensemble ICA incorporating non-negative constraint is a feasible method to handle dynamic image sequence obtained by the nuclear medicine techniques.