• Title/Summary/Keyword: stress release

Search Result 546, Processing Time 0.026 seconds

Design and Fabrication of an Electrostatic Microplate Resonator (정전형 미소 평판 공진자의 설계 및 제작)

  • Jeong, Ok-Chan;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.494-502
    • /
    • 1999
  • This paper represents an electrostatic micro plate resonator which consists of a rigid plate suspended with four bridges and a counter electrode. The bridges of the resonator are designed corrugated so that the residual stress are released. The FEM simulation results confirmed that the deflection characteristic of the corrugated bridge is hardly affected by the initial residual tensile stress. One resonator with the corrugated bridges and the other with the flat bridges were fabricated by the boron diffusion process and the anisotropic etch process. The vertical deflection of the fabricated electrostatic resonator was measured with a laser vibrometer, and the data were compared with the calculation results. The deflection of the resonator with the flat bridges is smaller than the deflection of that with the corrugated ones because of the residual stress. The residual stress release effect was confirmed by the fact that the measured deflection of the resonator with the corrugated bridges in close to the calculated deflection of the resonator with the flat ones with the initial stress neglected.

  • PDF

Dynamic Stress Intensity Factor $K_{IIID}$ for a Propagating Crack in Liner Functionally Gradient Materials Along X Direction (X방향의 선형함수구배인 재료에서 전파하는 균열의 동적응력확대계수 $K_{IIID}$)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties $(\xi>0)$, next constant properties $(\x=0)$ and decreasing properties $(\xi<0)$ under constant crack tip properties and crack tip speed.

  • PDF

Optimization of Slot Location for Stress Distribution in Rotating Disc of Diamond Tools (다이아몬드 공구의 회전원판내 응력 분산을 위한 슬롯 위치의 최적화)

  • Park Sungil;Lee Sangjin;Byun Seopong;Hwang Seoungtack
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.560-565
    • /
    • 2005
  • The objective of this paper is to decide optimal of the slot angle to minimize stress concentration in rotating disc of diamond saw. The fracture phenomena of the slot are discussed by the theoretical and experimental approaches and then some recommendation are presented to prevent the fracture. The focus of this investigation is to evaluation the effect of the slot on stress distribution using optimum design technique and finite element method(FEM) analysis. Stress concentration of the slot with respect to the various parameter of the slot such position, size, number, rotation speed. From the experimental results, when the slot angle of diamond saw is located $8^{\circ}\~12^{\circ}$ from rotating direction, the maximum equivalent stress reduces.

Numerical Calculation of Energy Release Rates by Virtual Crack Closure Technique

  • Choi, Jae-Boong;Kim, Young-Jin;Yagawa, Genki
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1996-2008
    • /
    • 2004
  • A seamless analysis of material behavior incorporating complex geometry and crack- tip modeling is one of greatly interesting topics in engineering and computational fracture mechanics fields. However, there are still large gaps between the industrial applications and fundamental academic studies due to a time consuming detailed modeling. In order to resolve this problem, a numerical method to calculate an energy release rate by virtual crack closure technique was proposed in this paper. Both free mesh method and finite element method have been utilized and, thereafter, robust local and global elements for various geometries and boundary conditions were generated. A validity of the proposed method has been demonstrated through a series of fracture mechanics analyses without tedious crack-tip meshing.

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

A Study on Energy Release Rate for Interface Cracks in Anisotropic Dissimilar Materials (이방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1835-1843
    • /
    • 2001
  • The energy release rate for an interface crack in anisotropic dissimilar materials was obtained by the eigenfunction expansion method and also was analyzed numerically by the reciprocal work contour integral method. It was shown that the results for orthotropic dissimilar materials are consistent with the other worker's results.

Suppression of interfacial crack for foam core sandwich panel with crack arrester

  • Hirose, Y.;Hojo, M.;Fujiyoshi, A.;Matsubara, G.
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.11-30
    • /
    • 2007
  • Since delamination often propagates at the interfacial layer between a surface skin and a foam core, a crack arrester is proposed for the suppression of the delamination. The arrester has a semi-cylindrical shape and is arranged in the foam core and is attached to the surface skin. Here, energy release rates and complex stress intensity factors are calculated using finite element analysis. Effects of the arrester size and its elastic moduli on the crack suppressing capability are investigated. Considerable reductions of the energy release rates at the crack tip are achieved as the crack tip approached the leading edge of the crack arrester. Thus, this new concept of a crack arrester may become a promising device to suppress crack initiation and propagation of the foam core sandwich panels.

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Protective effect of Cirsium japonicum var. maackii against oxidative stress in C6 glial cells

  • Lee, Ah Young;Kim, Min Jeong;Lee, Sanghyun;Shim, Jae Suk;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.509-519
    • /
    • 2018
  • This study was investigated the anti-oxidant property and neuro-protective effect of Cirsium japonicum var. maackii (CJM) against oxidative stress in hydrogen peroxide ($H_2O_2$)-induced C6 glial cells. We measured the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical (${\cdot}OH$), and superoxide ($O_2{^-}$) radical scavenging activities of an ethanol extract and four fractions [n-Butanol, ethyl acetate (EtOAc), $CHCl_3$, and n-Hexane] from CJM. The results of this study show that the extract and all fractions from CJM had a dose-dependent DPPH radical scavenging activity. In particular, the EtOAc fraction exhibited the strongest scavenging effect with 88.23% at a concentration of $500{\mu}g/mL$. In addition, the EtOAc fraction from CJM also effectively scavenged ${\cdot}OH$ radicals and $O_2{^-}$ radicals, compared to other extract and fractions. In C6 glial cells, $H_2O_2$ markedly decreased the cell viability as well as increased lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. However, the EtOAc fraction of CJM attenuated the cellular damage from the oxidative stress by elevating the cell viability and inhibiting the LDH release and ROS over-production compared with the $H_2O_2$-treated control group. Our findings indicate that the EtOAc fraction from CJM has antioxidant effect and neuro-protective effect against oxidative stress, suggesting that it can be used as a natural antioxidant and therapeutic agent for the prevention of neurodegenerative disorders.

Stress Intensity Factor of Single Edge Cracked Plates Considering Materials and Geometry of Patch by p-Convergent Partial Layerwise Model (p-수렴 부분층별모델에 의한 일변균열판의 패치재료 및 기하형상에 따른 응력확대계수)

  • Ahn, Hyeon-Ji;Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.191-198
    • /
    • 2010
  • This study investigated that the stress reduction of single edge cracked plates with patch repairs according to different type of patching such as material, size and thickness of patch and adhesive as well as single sided or double sided patches. As a numerical tool, the p-convergent partial layerwise model has been employed. The proposed model is formulated by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacements across thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. Also, total strain energy release rate method is adopted to obtain stress intensity factors. Numerical examples are presented not only to demonstrate the stress reduction effect in terms of non-dimensional stress intensity factor and deflection with respect to different type of patch repairs, but also the accuracy of proposed model.