• 제목/요약/키워드: stress related gene expression

검색결과 269건 처리시간 0.028초

IL-18 gene expression pattern in exogenously treated AML cells

  • Seo, Min-Ji;Park, Min-Ha;Yook, Yeon-Joo;Kwon, Young-Sook;Suh, Young-Ju;Kim, Min-Jung;Cho, Dae-Ho;Park, Jong-Hoon
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.461-465
    • /
    • 2008
  • IL-18 production may enhance immune system defense against KG-1 cells ; NB4 cells, which are associated with good prognosis, do not produce IL-18. In this study, we treated KG-1 cells with IL-18 and used microarray technology to assess subsequent effects on gene expression. In UniGene-array of 7488 human genes, expression of 57 genes, including stress related genes, increased at least 2-fold, whereas expression of 48 genes decreased at least 2-fold. Following exogenous exposure of KG-1 cells to IL-18, expression of CRYGC, $NF{\kappa}BIA$ and NACA gene were monitored. The latter is a transcriptional coactivator potentiating c-Jun-mediated transcription.$NF{\kappa}BIA$ is an inhibitor of $NF{\kappa}B$, and affects growth regulation, apoptosis and hypoxic stress. Studies, such as this one, are beginning to clarify the differences between cells associated with good and bad cancer prognoses, which may ultimately assist in medical treatment for acute myeloid leukemia.

구속 스트레스 (immobilization stress)를 가한 rat의 hypothalamus에서의 유전자 발현 및 포심건비탕의 항스트레스 효과에 관한 cDNA microarray 분석 (Gene Expression Analyses in Hypothalami of Immobilization-stressed and BoshimgeonbiTang-treated Mice Using cDNA Microarray)

  • 이한창;염미정;김건호;최강덕;이승희;심인섭;이혜정;함대현
    • 동의생리병리학회지
    • /
    • 제17권6호
    • /
    • pp.1393-1403
    • /
    • 2003
  • The genetic effects of restraint stress challenge on HPA axis and the therapeutic effect of Boshimgeonbi-Tang on the stress were studied with cDNA microarray analyses on hypothalamus using an immobilization-stress mouse as stress model. Male CD-1 mice were restrained in a tightly fitted and ventilated vinyl holder for 2hours once a day, and this challenge was repeated for seven consecutive days. The body weights of the immobilization-stress mice were diminished about 25 percent degree as compared to normal ones. Seven days later, total RNA was extracted from the organs of the mouse, body-labeled with CyDye/sup TM/ fluorescence dyes (Amersham Bioscience Co., NJ), and then hybridized to cDNA microarray chip. Scanning and analyzing the array slides were carried out using GenePix 4000 series scanner and GenePix Pro/sup TM/ analyzing program, respectively. The expression profiles of 109 genes out of 6000 genes on the chip were significantly modulated in hypothalamus by the immobilization stress. Energy metabolism-, lipid metabolism-, apoptosis- and signal transduction-related genes were transcriptionally activated whereas DNA repair-, protein biosynthesis-, and structure integrity-related genes were down-regulated in hypothalamus. The 58 genes were up-regulated by the mRNA expression folds of 1.5 to 7.9. and the 51 genes were down-regulated by 1.5 - 3.5 fold. The 20 genes among them were selected to confirm the expression profiles by RT-PCR. The mRNA expression levels of Tnfrsf1a (apoptosis), Calm2 (cell cycle), Bag3 (apoptosis), Hspe1 (protein folding), Aatk (apoptosis), Dffa (apoptosis), Itgb1 (cell adhesion), Vcam1 (cell adhesion), Fkbp5 (protein folding), BDNF (neuron survival) were restored to the normal one by the treatment of Boshimgeonbi-Tang.

Characterization and gene expression of heat shock protein 90 in marine crab Charybdis japonica following bisphenol A and 4-nonylphenol exposures

  • Park, Kiyun;Kwak, Ihn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.2.1-2.7
    • /
    • 2014
  • Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells

  • Kim, Kyoung Hwan;Park, Jeong-Woong;Yang, Young Mok;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.312-319
    • /
    • 2021
  • Objective: Stress-induced cytotoxicity caused by xenobiotics and endogenous metabolites induces the production of reactive oxygen species and often results in damage to cellular components such as DNA, proteins, and lipids. The cytochrome P450 (CYP) family of enzymes are most abundant in hepatocytes, where they play key roles in regulating cellular stress responses. We aimed to determine the effects of the antioxidant compound, methylsulfonylmethane (MSM), on oxidative stress response, and study the cytochrome P450 family 3 subfamily A (CYP3A) gene expression in fetal horse hepatocytes. Methods: The expression of hepatocyte markers and CYP3A family genes (CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, and CYP3A97) were assessed in different organ tissues of the horse and fetal horse liver-derived cells (FHLCs) using quantitative reverse transcription polymerase chain reaction. To elucidate the antioxidant effects of MSM on FHLCs, cell viability, levels of oxidative markers, and gene expression of CYP3A were investigated in H2O2-induced oxidative stress in the presence and absence of MSM. Results: FHLCs exhibited features of liver cells and simultaneously maintained the typical genetic characteristics of normal liver tissue; however, the expression profiles of some liver markers and CYP3A genes, except that of CYP3A93, were different. The expression of CYP3A93 specifically increased after the addition of H2O2 to the culture medium. MSM treatment reduced oxidative stress as well as the expression of CYP3A93 and heme oxygenase 1, an oxidative marker in FHLCs. Conclusion: MSM could reduce oxidative stress and hepatotoxicity in FHLCs by altering CYP3A93 expression and related signaling pathways.

Characterization of immune gene expression in rock bream (Oplegnathus fasciatus) kidney infected with rock bream iridovirus (RBIV) using microarray

  • Myung-Hwa Jung;Sung-Ju Jung
    • 한국어병학회지
    • /
    • 제36권2호
    • /
    • pp.191-211
    • /
    • 2023
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Although, the immune responses of rock bream under RBIV infection have been studied, there is not much information at the different stages of infection (initial, middle and recovery). Gene expression profiling of rock bream under different RBIV infection stages was investigated using a microarray approaches. In total, 5699 and 6557 genes were significantly up- or down-regulated over 2-fold, respectively, upon RBIV infection. These genes were grouped into categories such as innate immune responses, adaptive immune responses, complements, lectin, antibacterial molecule, stress responses, DNA/RNA binding, energy metabolism, transport and cell cycle. Interestingly, hemoglobins (α and β) appears to be important during pathogenesis; it is highly up-regulated at the initial stage and is gradually decreased when the pathogen most likely multiplying and fish begin to die at the middle or later stage. Expression levels were re-elevated at the recovery stage of infection. Among up-regulated genes, interferon-related genes were found to be responsive in most stages of RBIV infection. Moreover, X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) expression was high, whereas expression of apoptosis-relate genes were low. In addition, stress responses were highly induced in the virus infection. The cDNA microarray data were validated using quantative real-time PCR. Our results provide novel inslights into the broad immune responses triggered by RBIV at different infection stages.

Isolation and Sequence Analysis of Ycf4 Gene from Zoysia japonica Steud.

  • Kim, Yang Ji;Lee, Hyo Yeon;Hyun, Hwa Ja
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.100-100
    • /
    • 2018
  • Zoysia japonica Steud.(Zj) is a typical warm-season Korean lawn grass, which is used in many places such as river banks, roadside and soccer fields in Korea. Recently, it has also been used in school yards and the Saemangeum reclaimed land to reduce water pollution. Although the cultivated area of turfgrass is steadily increasing worldwide, it grows fast requiring frequent mowing and is difficult to grow in shady areas and the cold region. Therefore this study aims searching for useful gene(s) to develop abiotic stress tolerant and dwarf zoysiagrass. We isolated Ycf4 gene based on the sequence from Oryza sativa Japonica through RT-PCR and RACE PCR. Ultimately, open reading frame (ORF) of ZjYcf4 was 558bp long, encoding a protein of 186 amino acid residues. NCBI blast results showed that the ZjYcf4 protein is evolutionarily closely related to Ycf4 protein from Zoysia macrantha and Setaria italica (100% and 98%, respectively). To determine whether ZjYcf4 was involved in environmental stress in wild-type zoysiagrass, expression patterns of the gene were analyzed by real-time PCR under salt, cold and dark conditions. They were analyzed after each stress treatment for 3 hours. In salt and cold stresses, the expression was higher compared to control (3-fold and 1.5-fold, respectively), although there was a 1.6-fold decrease in expression under dark stress treatment. As reported previously, we suggest that ZjYcf4 gene affects abiotic stress such as salt, cold and dark.

  • PDF

토양선충 Caenorhabditis elegans를 이용한 세리아($CeO_2$) 독성연구 (Ecotoxicological Effects of $CeO_2$ Nanoparticles on Soil Nematode Caenorhabditis elegans)

  • 노지연;박영권;최진희
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권2호
    • /
    • pp.87-91
    • /
    • 2008
  • In this study, three different sizes of cerium oxide ($CeO_2$) nanoparticles were synthesized and exposed to Caenorhabditis elegans to investigate the potential harmful effect of $CeO_2$ nanoparticles on the environment. The effects of the $CeO_2$ nanoparticles on C. elegans were assessed at multiple levels, such as with respect to stress response gene expression, growth, reproduction and mortality. Moreover, to test the ecotoxicological relevance of $CeO_2$-induced gene expression. The overall results suggest that $CeO_2$ nanoparticles may provoke ecotoxicity in C. elegans especially with respect to gene expression, reproduction and survival, which can comprise an important contribution to knowledge on the ecotoxicity of $CeO_2$ nanoparticles, about which little data are available. This is particularly valuable in the biomarker research on ecotoxicology, as ecological relevance is a crucial criterion for the applicability of the biomarker in field biomonitoring and ecological risk assessment.

Functional Characterization of PR-1 Protein, β-1,3-Glucanase and Chitinase Genes During Defense Response to Biotic and Abiotic Stresses in Capsicum annuum

  • Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.195-206
    • /
    • 2005
  • Spatial and temporal expression of pathogenesis-related (PR) gene and proteins has been recognized as inducible defense response in pepper plants. Gene expression and/or protein accumulation of PR-1, $\beta-1,3-glucanase$ and chitinase was predominantly found in pepper plants during the inoculations by Xanthomonas campestris pv. vesicatoria, Phytophthora capsici and Colletotrichum coccodes. PR-1 and chitinase genes were also induced in pepper plants in response to environmental stresses, such as high salinity and drought. PR-1 and chitinase gene expressions by biotic and abiotic stresses were regulated by their own promoter regions containing several stress-related cis-acting elements. Overexpression of pepper PR-1 or chitinase genes in heterogeneous transgenic plants showed enhanced disease resistance as well as environmental stress tolerances. In this review, we focused on the putative function of pepper PR-1, $\beta-1,3-glucanase$ and chitinase proteins and/or genes at the biochemical, molecular and cytological aspects.