• Title/Summary/Keyword: stress related gene expression

검색결과 270건 처리시간 0.034초

아라키돈산과 철 유도성 산화적 스트레스에 대한 금앵자(金櫻子) 열수 추출물의 간세포 보호 효능 (Water Extract of Rosa laevigata Michx. Protects Hepatocytes from Arachidonic Acid and Iron-mediated Oxidative Stress)

  • 고해리;제갈경환;송시연;김난이;강지원;변성희;김영우;조일제;김상찬
    • 대한본초학회지
    • /
    • 제30권6호
    • /
    • pp.7-15
    • /
    • 2015
  • Objectives : Rosa laevigata Michx. has been used for the treatment of renal disease in traditional Korean medicine. In this study, we investigated cytoprotective effect of R. laevigata water extract (RLE) against oxidative stress induced by arachidonic acid (AA) + iron.Methods : To evaluate the protective effects of RLE against AA + iron-induced oxidative stress in HepG2 cell, cell viability and changes on apoptosis-related proteins were assessed by MTT and immunoblot analyses. The effects of RLE on reduced glutathione level, production of reactive oxygen species and mitochondrial membrane potential were also monitored. Furthermore, to verify underlying molecular mechanism, NF-E2-related factor 2 (Nrf2) was examined by immunoblot analysis. Additionally, Nrf2 transactivation and its downstream target genes expression were also determined by reporter gene and realtime RT-PCR analyses.Results : RLE pretreatment (30-300 μg/ml) prevented cells from AA + iron-mediated cell death in a concentration dependent manner. In addition, 100 μg/ml RLE inhibited AA + iron-induced glutathione depletion, reactive oxygen species production and mitochondrial dysfunction. RLE accumulated nuclear Nrf2 and also transactivated Nrf2, which was evidenced by antioxidant response element- and glutathione S-transferase A2-driven luciferase activities and mRNA level of glutamate-cysteine ligase catalytic subunit, NAD(P)H:quinone oxidoreductase 1 and sestrin 2. Moreover, protective effect of RLE against AA + iron was abolished in Nrf2 knockout cells.Conclusions : These results indicate that RLE has the ability to protect hepatocyte against oxidative stress through Nrf2 activation.

Effects of dietary supplementation of glucose oxidase, catalase, or both on reproductive performance, oxidative stress, fecal microflora and apoptosis in multiparous sows

  • Sun, Xiaojiao;Piao, Longguo;Jin, Haifeng;Nogoy, K. Margarette C.;Zhang, Junfang;Sun, Bin;Jin, Yi;Lee, Dong Hoon;Choi, Seong-Ho;Smith, Stephen B;Li, Xiangzi
    • Animal Bioscience
    • /
    • 제35권1호
    • /
    • pp.75-86
    • /
    • 2022
  • Objective: The objective of this experiment was to investigate the effect of dietary glucose oxidase (GOD), catalase (CAT), or both supplementation on reproductive performance, oxidative stress, and apoptosis in sows. Methods: A total of 104 multiparous sows were randomly assigned to four groups (n = 26) with each group given a basal diet, basal diet plus GOD at 60 U/kg, basal diet plus CAT at 75 U/kg, and basal diet plus GOD at 60 U/kg and CAT at 75 U/kg. Sows were fed the experimental diets throughout gestation and lactation. Results: Dietary GOD supplementation increased average daily feed intake of sows and litter weight at weaning (p<0.05). Dietary CAT supplementation reduced the duration of parturition, stillbirth, and piglet mortality and increased growth performance of weaned piglets (p<0.05). Dietary GOD and CAT supplementation enhanced antioxidant enzyme activities and lessened oxidative stress product levels in plasma of sows and elevated antioxidant capacity of 14-day milk and plasma in weaned piglets (p<0.05). Dietary GOD supplementation increased fecal Lactobacillus counts and reduced Escherichia coli counts of sows (p<0.05). Compared with the basal diet, the GOD diet reduced fecal Escherichia coli counts of sows, but the addition of CAT did not reduce Escherichia coli counts in the GOD diet. Dietary GOD and CAT supplementation reduced the apoptosis rate of the liver, endometrium, and ovarian granulosa cells in sows (p<0.05). In the liver, uterus, and ovary of sows, the mRNA expression of caspase-3 and caspase-9 was downregulated by dietary GOD and CAT supplementation (p<0.05). Conclusion: Dietary GOD and CAT supplementation could improve the antioxidant capacity of sows and weaned piglets, and alleviate hepatic, ovarian and uterine apoptosis by weakening apoptosis-related gene expression. Glucose oxidase regulated fecal microflora of sows, but supplementation of CAT to GOD could weaken the inhibitory effect of GOD on fecal Escherichia coli.

Study on hydroxy fatty acid contents changes and physiological responses under abiotic stresses in transgenic Camelina

  • Kim, Hyun-Sung;Lee, Hyun-Sook;Lim, Hyun-Gyu;Park, Won;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Ahn, Sung-Ju
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.191-191
    • /
    • 2017
  • Hydroxy fatty acid (HFA) is an important industrial resource that known to be extracted from seeds of Castor or Lesquerella. However, mass production of HFA from those crops are difficult because of their behavior or life cycle. In this study, we applied HFA synthesis related gene FAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT on bioenergy crop Camelina sativa. Furthermore, we determined NaCl or cold stress tolerance changes of transgenic Camelina. RcFAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT genes were cloned into multigene expression vector which is engineered with seed specific promoter of FAE1 or Napin. Combination of HFA genes multi-expression vector constructs were divided into Set3 (RcFAH12, RcPDAT1-2, RcLPCAT), Set4 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT), and Set5 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT, RcPDCT). Transgenic HFA synthesis Camelina plants were generated using agrobacterium-mediated vacuum infiltration system. Results of fatty acid composition of T1 transgenic Camelina seeds analyzed by GC-MS showed 9.5, 9.0, and 13.6 % of HFA contents in Set3#6, Set4#8, and Set5#10, respectively. Therefore, seeds of T2 generation were harvest from Set5#10 which is shown highest HFA contents, and, 17.7, 8.1 and 10.5 % of HFA contents were determined in Set5#10-5, Set5#10-8, and Set#10-10, respectively. However, 7.7% of C18:2 and 22.3 % of C18:3 among unsaturated fatty acids were decreased in Set5#10-5 than WT. Meanwhile, we confirmed abiotic stress responses in T2 transgenic Camelina Set5#10-5 and Set5#10-10 under 0, 100, 150, and 200 mM NaCl or 25, 15, and $10^{\circ}C$ temperature for 5 weeks. Both Set5#10-5 and Set5#10-10 showed lower growth in height than WT in control and NaCl condition. Growth of leaf length and width were similar in WT and Set5#10-10 but lower in Set5#10-5 under NaCl stress. Number of opened flowers showed that both transgenic Camelina were lower than WT under normal condition. But, WT and Set5#10-10 showed similar opened flower number in 100 and 200 mM NaCl. In cold stress, 15 and $10^{\circ}C$ treatment for 5 weeks did not showed significant changes in between WT and both transgenic lines even they showed different growth rate in control condition. Taken together, growth and development are delayed by expression of exogenous HFA related genes in transgenic lines but relative abiotic stress sensitivity is similar with WT. In conclusion, reduced C18:2 or C18:3 fatty acid composition of seed by HFA synthesis is resulted from lack of resource supplement for development at seedling stage but it is not affect NaCl and cold stress tolerance.

  • PDF

Genomic Organization and Isoform-Dependent Expression Patterns of Wap65 genes in Various Tissues during Immune Challenges in the Mud Loach Misgurnus mizolepis

  • Kim, Yi Kyung;Cho, Young Sun;Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제17권4호
    • /
    • pp.471-478
    • /
    • 2014
  • Genomic organization, including the structural characteristics of 5'-flanking regions of two 65-kDa protein (WAP65) isoform genes associated with warm temperature acclimation, were characterized and their transcriptional responses to immune challenges were examined in the intestine, kidney and spleen of the mud loach (Misgurnus mizolepis; Cypriniformes). Both mud loach Wap65 isoform genes displayed a 10-exon structure that is common to most teleostean Wap65 genes. The two mud loach Wap65 isoforms were predicted to possess various stress- and immune-related transcription factor binding sites in their regulatory regions; however, the predicted motif profiles differed between the two isoforms, and the inflammation-related transcription factor binding motifs, such as NF-${\kappa}B$ and CREBP sites, were more highlighted in the Wap65-2 isoform than the Wap65-1 isoform. The results of qRT-PCR indicated that experimental immune challenges using Edwardsiella tarda, lipopolysaccharide or polyI:C induced the Wap65-2 isoform more than Wap65-1 isoform, although modulation patterns in response to these challenges were tissue- and stimulant-dependent. This study confirms that functional diversification between the two mud loach Wap65 isoforms (i.e., closer involvement of Wap65-2 in the acute phase of inflammation and innate immunity) occurs at the mRNA level in multiple tissues, and suggests that such differential modulation patterns between the two isoforms are related to the different transcription factor binding profiles in their regulatory regions.

마우스 수컷 생식세포에서 비스페놀 A에 대한 인삼 에탄올 추출물의 보호 효과 (Protective Effect of Panax ginseng Ethanol Extracts Against Bisphenol A (BPA) in Mouse Male Germ Cells)

  • 김형돈;손상현;김진성;이희정;박춘근;안영섭;이상원;김영옥
    • 한국약용작물학회지
    • /
    • 제23권2호
    • /
    • pp.138-143
    • /
    • 2015
  • This study was carried out to evaluate the preventive effect of three forms of Korean ginseng roots (fresh, white and red) against bisphenol A (BPA) toxicity in mouse male germ cells (GC-2spd, TM3, TM4). ROS (reactive oxygen species) generation were measured by DCF-DA (2',7'-dichlorohydrofluorescein diacetate) assay. Also, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression levels of apoptosis-related genes, Bax (pro-apoptotic gene) and Bcl2 (anti-apoptotic gene). ROS generation was increased by $50{\mu}M$ BPA, but definitely decreased by treatment with Korean ginseng extracts (fresh, white and red) in mouse male germ cells. In especial, Korean fresh ginseng extract reduced significantly ROS production to normal control. In addition, Korean fresh and white ginseng extracts suppressed the apoptosis of mouse male germ cells by fine-tuning mRNA levels of apoptotic genes changed by BPA. In general, Korean fresh ginseng extract was more effective than white ginseng extract for reducing BPA-induced oxidative stress and apoptosis in mouse male germ cells. Therefore, Korean fresh and white ginseng may help to alleviate biphenol A toxicity in mouse male germ cells.

콩의 Pathogenesis-Related 10 유전자를 이용한 내염성 벼 형질전환 계통 개발 (Development of Salt-Tolerant Transgenic Rice Using Soybean PR10 Gene)

  • 김효진;백소현;신운철;서춘순;박명렬;고재권;윤성중
    • 한국육종학회지
    • /
    • 제42권5호
    • /
    • pp.540-546
    • /
    • 2010
  • 콩의 PR10 유전자(GmPR10)를 벼에 형질전환하여 GmPR10 전이 유전자의 발현 정도와 내염성 관련 형질의 반응 사이의 인과관계를 조사하여 염 스트레스에 대한 GmPR10 생리적 기능을 분석하고 내염성 유전자원을 개발하였다. 1. 전이 유전자는 형질전환 계통에 따라 게놈 내에 1 ~ 6개의 사본이 도입되었고, 선발된 8개의 형질전환 계통 모두에서 전이 유전자가 발현되었으며, 발현 정도는 계통에 따라 변이를 보였다. 2. $T_1$세대 2계통의 형질전환 식물체와 비 형질전환 식물체에 125mM NaCl을 시간별로 처리한 결과, 전이 유전자 GmPR10의 전사체 검출양은 2계통의 형질전환체에서 모두 염처리 6시간까지 증가하였고, 12시간 이후에는 감소하였다. 3. 세포의 전해질 누출율은 형질전환체가 비 형질전환체에 비해 낮았고, 뿌리가 잎보다 낮았다. 또한, 전이 유전자 전사체의 검출량이 높을수록 전해질 누출율은 낮았다. 4. NaCl 용액에서의 생육 정도는 형질전환체가 비 형질전환체보다 현저히 양호하였으며 GmPR10 전이 유전자의 발현이 높을수록 생육 정도가 더 좋았다. 결론적으로 GmPR10 은 내염성을 증진시키는 기능이 있으며, GmPR10 전이유전자의 발현이 높은 계통은 내염성 벼 육성용 소재로 이용할 수 있을 것으로 평가된다.

고삼(苦蔘)이 RIN-m5F세포의 인슐린 분비와 $\alpha$-glucosidase 활성 억제에 미치는 영향 (Effects of Radix Sophora Flavescentis Extract on Insulin Secretion in RIN-m5F Cells and $\alpha$-glucosidase Inhibition)

  • 안소현;조충식;김철중
    • 대한한방내과학회지
    • /
    • 제30권3호
    • /
    • pp.481-494
    • /
    • 2009
  • Background : Radix Sophora Flavescentis (SF) is used for the treatment of diabetes mellitus in Traditional Korean Medicine. However, little is known about the effects of Radix Sophora Flavescentis extract (SFE) on the hypoglycemic mechanism. Objective : We performed a series of experiments to verify the effects of SFE on the proliferation of RIN-m5F, the secretion and synthetic processes of insulin with glucose stimulation and inhibition of $\alpha$-glucosidase. Methods : Various amounts of SFE were added to the RIN-m5F cell culture to identify the effects on the cell proliferation, total amounts of insulin secretion, and related gene expression at the molecular level. Also to identify the inhibitory effect on the $\alpha$-glucosidase activities, ${\rho}NPG$ assay was done with various SFE concentrations followed by comparison with control. Results : SFE did not show considerable effects on RIN-m5F cells proliferation, insulin secretion or insulin mRNA expression, whichever phenomena did not depend on the glucose concentration. However, SFE significantly inhibited $\alpha$-glucosidase activity in a dose dependent manner compared to control. Conclusions : This study showed that SFE has potent $\alpha$-glucosidase inhibitory activity. Thus, SF may by used for the improvement of overall glycemic control. Further mechanism studies on the lipid toxicity and oxidation stress of SF seem to be necessary.

  • PDF

Pulegone Exhibits Anti-inflammatory Activities through the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-stimulated RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Abdul, Qudeer Ahmed;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제24권1호
    • /
    • pp.28-35
    • /
    • 2018
  • Pulegone is a naturally occurring organic compound obtained from essential oils from a variety of plants. The aim of this study was to investigate the anti-inflammatory effects through the inhibitory mechanism of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results revealed that pulegone significantly inhibited NO production as well as iNOS and COX-2 expressions. Meanwhile, western blot analysis showed that pulegone down-regulated LPS-induced $NF-{\kappa}B$ and MAPKs activation in RAW 264.7 cells. Furthermore, the selected compound suppressed LPS-induced intracellular ROS production in RAW 264.7 cells, while the expression of stress response gene, HO-1, and its transcriptional activator, Nrf-2 was upregulated upon pulegone treatment. Taking together, these findings provided that pulegone inhibited the LPS-induced expression of inflammatory mediators via the down-regulation iNOS, COX-2, $NF-{\kappa}B$, and MAPKs signaling pathways as well as up-regulation of Nrf-2/HO-1 indicating that pulegone has a potential therapeutic and preventive application in various inflammatory diseases.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.