• 제목/요약/키워드: stress regions

검색결과 636건 처리시간 0.024초

Magnetohydrodynamic Simulations of Barred Galaxies

  • 김웅태
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.38.2-38.2
    • /
    • 2012
  • We use two-dimensional high-resolution MHD simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks and leads to a smaller and more centrally distributed ring, resulting in the mass inflow rates larger, by more than two orders of magnitude, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms have a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.

  • PDF

A Study on Effect of Temperature of Press Forging on AZ31 Magnesium Alloy

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.66-71
    • /
    • 2004
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast-ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, it is studied about the forming characteristics of press forging of AZ31 magnesium alloy by MSC/MARC in case of material having one boss and MSC/Supeiforge in case of material having multi-boss with heat transfer analysis during deformation at elevated temperature. For these results it is simulated about temperature distribution, strain distribution, and stress distribution of AZ31 Magnesium alloy. During the press forging, foot regions of bosses showed greater temperature rise than other areas of AZ31 sheet. Finally the plastic strain of AZ31 sheet did not remarkably vary with increasing temperature from 373 to 473K, while it significantly increased as the forming temperature increased from 473 to 573K, which is related with the change in micro-structures, such as dynamic re-crystallization occurring during the deformation process.

  • PDF

Visualization of Relative Flow Patterns in Centrifugal Blood Pump

  • Chan, Weng-Kong;S.C.M Yu;L.P. Chua;Y.W. Wong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1869-1875
    • /
    • 2001
  • The paper presents computational and flow visualization results on a centrifugal blood pump. 4 impeller designs were tested at a rotational speed of 2000 rpm using blood analog as working fluid. All impellers have seven blades but of different geometry (Impellers A3, A4, B2 and R7). Flow visualization within the impeller passages was conducted using an image de-rotation system. A pair of large scale vortices was found within the blades of impeller R7 while a single vortex was found in most of the passages of backward facing impellers (Impellers A3, A4 and B2). To establish the effects of blade geometry on blood cells, CFD was used to simulate the blade to blade flow to provide an estimate of the maximum shear stress. The results showed that though most of the stresses within the blade passages are below a threshold level of 150 N/m$^2$for extensive erythrocyte damage to occur, there are some regions near to the leading edge of the pressure side where the shear stresses a abode threshold level.

  • PDF

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • 제12권1호
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.

소재 크기효과를 고려한 미세가공공정 유한요소해석 (Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials)

  • 변상민;이영석
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

전단류 하중을 받는 상부장력 라이저의 동적 응답 해석 (Dynamic Response Analysis of Top-tensioned Riser Under Sheared Current Load)

  • 김국현
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2013
  • A numerical scheme based on a mode superposition method is presented for the dynamic response analysis of a top-tensioned riser (TTR) under sheared current loads. The natural frequencies and mode shapes of the TTR have been calculated analytically for a beam with a slowly varying tension and pinned-pinned boundary conditions at the top and bottom ends. The lift coefficients and corresponding amplitudes used to estimate the vortex-induced modal force and damping for each mode were predicted via iterative calculations based on the input and output power balancing concept. Here, the power-in regions were controlled by the normal distribution function, for which the center was coincident with the lock -in location by local vortex-shedding, and the range was defined by the constant standard deviation for the reduced velocity by the local current speed. Finally, dynamic responses such as root-mean-squared displacement and stress were calculated using the mode superposition technique. In order to verify the presented scheme, a numerical calculation was performed for a TTR under an arbitrary linearly sheared current and linearly varying tension. A comparison with the results of the existing software showed that the presented scheme could give reliable and feasible solutions. Case studies were performed to investigate the effects of various current loads and tensions.

천이영역의 희박기체 압축성 경계층 해석 (Analysis of rarefied compressible boundary layers in transition regime)

  • 최서원
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.