• Title/Summary/Keyword: stress regions

Search Result 633, Processing Time 0.026 seconds

Robust Design of Connecting Rod (커넥팅로드 강건 설계 방안)

  • Han, Moonsik;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.142-147
    • /
    • 2014
  • Finite element analysis along with DOE scheme has been performed to obtain robust design of connecting rod assembly. An analysis was conducted with five loading steps. Fatigue analysis was done using commercial software FEMFAT and fatigue safety factors at the interested regions such as shank area of small end and big end were calculated. 27 design cases using 3 factors with 3 levels are constructed by design of experiment. Each case is simulated to find the most influential factors. Response for this study, maximum Von-Mises stress, has been used to determine main factors of connecting rod assembly. Among the 3 factors, compression load affected the response greatly. However, bolt assembly load and width of shank flat area showed a little influence to the response. Interaction effects among factors considered did not occur. Connecting rod assembly considered in this study showed its sensitivity to the noise factor such as compression load rather than design factor such as width of flat shank area.

The Structrual Behavior of Eccentrically Loaded Hybrid FRP-Concrete Composite Columns (편심재하된 하이브리드 FRP-콘크리트 합성 기둥의 구조적 특성)

  • Choi, Jin-Woo;Seo, Su-Hong;Park, Joon-Soek;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Pile foundations constructed by the fiber reinforced polymer plastic piles have been used in coastal and oceanic regions in many countries. Generally, fiber reinforced polymer plastic piles are consisted of filament winding FRP which is used to wrap the outside of concrete pile to increase the axial load carrying capacity or pultruded FRP which is located in the core concrete to resist the bending moment arising due to eccentric loading. In this paper, the analytical procedures of hybrid concrete filled FRP tube flexural members are suggested based on the CFT design method. Moreover, the analytical results are compared with the experimental results to obtained by the previous researches. The results of comparison analyses are performed to estimate the accuracy of the analytical procedure for hybrid FRP-concrete composite compression test, members under eccentrical loading.

A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results

  • Bekele, S.A.;Hangan, H.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.337-346
    • /
    • 2002
  • Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Wind Tunnel Study on Flow Characteristics around KRISO 300K VLCC Double-body Model (KRISO 300K VLCC 이중모형선의 유동특성에 대한 풍동실험 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.15-21
    • /
    • 1999
  • The flow characteristics around KRISO 300K VLCC double-body model have been experimentally investigated in a closed-type subsonic wind tunnel. The local mean velocity and turbulence statistics including turbulent intensity. Reynolds shear stress and turbulent kinetic energy were measured using a x-type hot-wire probe. The measurements were carried out at several transverse stations of the stern and near wake regions. The surface flow was visualized using on oil-film technique to see the flow pattern qualitatively. The flow in the stern and near wake region revealed complicated three-dimensional flow characteristics. The VLCC model shows a hook-shaped wake structure behind the propeller boss in the main longitudinal vortex region. The thin boundary layer at midship was increased gradually in thickness over the stern and evolved into a full three-dimensional turbulent wake.

  • PDF

Numerical Experiment on the Sogcho Eddy due to the strong offshore winds in the East Sea

  • Kim Soon Young;Lee Hyong Sun;Lee Jae Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In order to understand the generation of the Sogcho Eddy due to the strong offshore winds, we first investigated the characteristics of winds at Sogcho, Kangnung and Samchuk, and then carried out a series of numerical experiments using the nonlinear 1 1/2-layer model. The models were forced by wind stress fields, similar in structure to the prevailing winds that a field in the east coast of Korea during the winter season. The winds were composed of the background winds $(-1\;dyne/cm^2)$ for 90 days and the local winds $(-4\;dyne/cm^2)$ for 30 days. The analysis of wind data at three stations (Sogcho, Kangnung, and Samchuk) showed that the wind was stronger in winter than in other seasons and the offshore component was much dominant. According to our numerical solutions, the Sogcho Eddy of about 200 km in diameter was generated due to the strong offshore winds prevailing in the Kangnung - Sogcho regions. The eastward propagation of the Rossby waves reflected at the western boundary resulted in the eastward meandering motion from the eastern side of the eddy.

  • PDF

Geometric Detail Suppression for the Generation of Efficient Finite Elements (효율적 유한요소 생성을 위한 미소 기하 특징 소거)

  • 이용구;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 1997
  • Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.

  • PDF

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

Restoration of Upper Anterior Dentition using Customized Anterior Guide Table (Customized Anterior Guide Table을 이용한 상악 전치부 수복증례)

  • Oh, Woo-Shik;Jeong, Seung-Mi;Kim, Hyeong-Seob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 2003
  • When making crown and bridges on anterior regions, many practitioners consider the esthetics the most. For this reason functional aspect are not considered as much as the esthetics. If the occlusion on the anterior region are not formed correctly, movement of the temporomandibular joint can be disturbed and excessive stress can be occur that pathologic condition can be under lied. On this case presentation will show the importance of the anterior guidance and suggest the appropriate protocol of using customized anterior guide table. A 45years old male had to remake both of the upper central and lateral PFM because of the porcelain fracture. The new PFM crowns were made conventional methods without considering the anterior guidance. After the temporary setting, the patient complained of discomfort and short looking upper anteriors. To solve these problems we had to restore the palatal contour and length of the new crowns by making customized anterior guide table using temporary crowns that contains patient's old anterior guidance. This procedure which is copying the pt's comfortable anterior guidance to the final prosthesis made them to be esthetic and patients to feel comfortable.

Magnetohydrodynamic Simulations of Barred Galaxies

  • Kim, Woong-Tae;Stone, James M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2012
  • We use two-dimensional high-resolution MHD simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks and leads to a smaller and more centrally distributed ring, resulting in the mass inflow rates larger, by more than two orders of magnitude, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms have a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.

  • PDF