• 제목/요약/키워드: stress regions

검색결과 633건 처리시간 0.03초

Lysyl-tRNA Synthetase Inhibits Various Shear Stress-stimulated Signaling Pathways in Endothelial Cells

  • Park, Heon-Yong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2008년도 Proceedings of the Convention
    • /
    • pp.103-115
    • /
    • 2008
  • Hemodynamic shear stress, the dragging force generated by blood flow, is known as an anti-atherogenic factor. We tested whether lysyl-tRNA synthetase (KRS) will be utilized as an agent controlling shear-sensing systems. KRS was previously known to be secreted as a pro-inflammatory agent. Here we found that KRS inhibited various shear-stimulated signaling pathways. We further found that KRS binds to detergent-resistant membrane (DRM), indicating that KRS binding molecules exist in DRM, specialized regions of the plasma membrane. DRM plays important roles in a variety of cellular processes and consists of gangliosides, signaling molecules and cytoskeletons. We then determined that KRS was colocalized with integrins ${\alpha}4$, ${\alpha}5$ and $av{\beta}3$. In addition, KRS was shown to be associated with sialic acid, existing at the end of gangliosides. Interestingly, the adherent effect of KRS was inhibited by pretreatment with sialic acid. Moreover, treatment of endothelial cells with neuraminidase appeared to inhibit both the KRS adhesion to endothelial cells and shear-stimulated signaling. In conclusion, KRS is likely to be utilized as a vascular regulator.

  • PDF

토목섬유 interface의 변형율 연화 모델 개발 (Development of Strain-softening Modeling for Interfaces between Geosynthetics)

  • 서민우;박준범;박인준;조남준
    • 한국지반신소재학회논문집
    • /
    • 제2권1호
    • /
    • pp.57-68
    • /
    • 2003
  • Strain-softening model is developed to characterize the interface behavior of geomembrane with geotextile and geosynthetic clay liner(GCL). The model proposed in this research is calibrated by using data from direct shear tests conducted on smooth and textured geomembrane. The research is divided into two regions, pre-peak and post-peak, to take into account of strain-softening effect. Although slight difference between measured and back calculated data is observed under high normal stress, good agreements, in general, are found from back calculations. Especially, good consistency is observed in the case of low normal stress. Based on the results, it can be concluded that the proposed model can be a reasonable constitutive law to figure out the behavior of strain-softening between interfaces of geomembrane. In addition, DSC(Disturbed State Concept) model is also presented for further application in geosynthetic interfaces.

  • PDF

불교란 점토 압밀시험 결과의 새로운 해석법 (A New Analysis Method of the Consolidation Test Data for an Undisturbed Clay)

  • 박종화;고우모또타쯔야
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.106-114
    • /
    • 2002
  • In this study, the results of a series of consolidation test for undisturbed Ariake clay in Japan were analyzed by three methods, e-log p (e: void ratio, p: consolidation pressure), log e-log p and n-log p (n: porosity). Moreover, the characteristics of each analysis method were studied. For undisturbed Ariake clay, the log o-Log p and the n-log p relationships can be found as two groups of straight lines of different gradients, but both the elastic consolidation and plastic consolidation regions of e-log p relationship are expressed as a curve. In this paper, the porosity of consolidation yield n$\_$y/, consolidation yield stress p$\_$y/, and the gradient of the plastic consolidation region C$\_$p/ were represented by the log e-log p method, and n$\_$c/, P$\_$cn/ and C$\_$cn/ were represented by the n-log p method. The meaning and the relationships of each value were studied, and the interrelationships among compression indices i.e. C$\_$cn/, C$\_$p/ and C$\_$c/ are obtained from each analysis method as a function of initial porosity n$\_$0/.

Investigating the fatigue failure characteristics of A283 Grade C steel using magnetic flux detection

  • Arifin, A.;Jusoh, W.Z.W.;Abdullah, S.;Jamaluddin, N.;Ariffin, A.K.
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.601-614
    • /
    • 2015
  • The Metal Magnetic Memory (MMM) method is a non-destructive testing method based on an analysis of the self-magnetic leakage field distribution on the surface of a component. It is used for determining the stress concentration zones or any irregularities on the surface or inside the components fabricated from ferrous-based materials. Thus, this paper presents the MMM signal behaviour due to the application of fatigue loading. A series of MMM data measurements were performed to obtain the magnetic leakage signal characteristics at the elastic, pre-crack and crack propagation regions that might be caused by residual stresses when cyclic loadings were applied onto the A283 Grade C steel specimens. It was found that the MMM method was able to detect the defects that occurred in the specimens. In addition, a justification of the Self Magnetic Flux Leakage patterns is discussed for demonstrating the effectiveness of this method in assessing the A283 Grade C steel under cyclic loadings.

선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템 (Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model)

  • 유진선;하윤석
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.

절연체위의 다결정실리콘 재결정화 공정최적화와 그 전기적 특성 연구 (Optical process of polysilicaon on insulator and its electrical characteristics)

  • 윤석범;오환술
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권4호
    • /
    • pp.331-340
    • /
    • 1994
  • Polysilicon on insulator has been recrystallized by zone melting recrystallization method with graphite strip heaters. Experiments are performed with non-seed SOI structures. When the capping layer thickness of Si$\_$3/N$\_$4//SiO$\_$2/ is 2.0.mu.m, grain boundaries are about 120.mu.m spacing and protrusions reduced. After the seed SOI films are annealed at 1100.deg. C in NH$\_$3/ ambient for 3 hours, the recrystallized silicon surface has convex shape. After ZMR process, the tensile stress is 2.49*10$\^$9/dyn/cm$\^$2/ and 3.74*10$\^$9/dyn/cm$\^$2/ in the seed edge and seed center regions. The phenomenon of convex shape and tensile stress difference are completely eliminated by using the PSG/SiO$\_$2/ capping layer. The characterization of SOI films are showed that the SOI films are improved in wetting properties. N channel SOI MOSFET has been fabricated to investigate the electrical characteristics of the recrystallized SOI films. In the 0.7.mu.m thickness SOI MOSFET, kink effects due to the floating substrate occur and the electron mobility was calculated from the measured g$\_$m/ characteristics, which is about 589cm$\^$2//V.s. The recrystallized SOI films are shown to be a good single crystal silicon.

  • PDF

Strength estimation for FRP wrapped reinforced concrete columns

  • Cheng, Hsiao-Lin;Sotelino, Elisa D.;Chen, Wai-Fah
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.1-20
    • /
    • 2002
  • Fiber-Reinforced Plastics (FRP) have received significant attention for use in civil infrastructure due to their unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and fatigue resistance, and tailorability. It is well known that FRP wraps increase the load-carrying capacity and the ductility of reinforced concrete columns. A number of researchers have explored their use for seismic components. The application of concern in the present research is on the use of FRP for corrosion protection of reinforced concrete columns, which is very important in cold-weather and coastal regions. More specifically, this work is intended to give practicing engineers with a more practical procedure for estimating the strength of a deficient column rehabilitated using FRP wrapped columns than those currently available. To achieve this goal, a stress-strain model for FRP wrapped concrete is proposed, which is subsequently used in the development of the moment-curvature relations for FRP wrapped reinforced concrete column sections. A comparison of the proposed stress-strain model to the test results shows good agreement. It has also been found that based on the moment-curvature relations, the balanced moment is no longer a critical moment in the interaction diagram. Besides, the enhancement in the loading capacity in terms of the interaction diagram due to the confinement provided by FRP wraps is also confirmed in this work.

Alloy 82/182 이종금속 용접부 열영향부의 계계적물성치 파악 (Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint)

  • 김진원;김종성;이경수
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents the characteristics of mechanical properties within the heat affected zones(HAZs) of dissimilar metal weld joint between SA508 Gr.1a and F3l6 stainless steel(SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the heat affected regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope(OM) and transmission microscope(TEM). The results showed that significant gradients of the yield stress(YS), ultimate tensile stress(UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ developed during the welding process. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS. TEM micrographs demonstrated these characteristics of the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화 (Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads)

  • 이은선;고태식;이치승
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석 (Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model)

  • 우대곤;김영은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF