• 제목/요약/키워드: stress point approach

검색결과 126건 처리시간 0.023초

구조응력을 이용한 하중 전달형 십자 양면 비대칭 필렛 용접 시험편의 피로강도 평가 (Fatigue Assessment of Load-carrying Asymmetric Double Bevel Cruciform Welded Joints using Structural Stress Approach)

  • 김성민;김영남;이승현;김명현
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.86-91
    • /
    • 2012
  • Fatigue tests and analyses were carried out to investigate fatigue strength and crack initiation point of load-carrying asymmetric double bevel cruciform welded joints. Mesh-insensitive structural stress approach was adopted to estimate high precise fatigue life and crack initiation point. Two different case material and weld shape were considered in this study. Results of fatigue tests and analyses were compared and discussed in consideration of applicability of structural stress approach as the reliable fatigue assessment method of cruciform welded joints.

다점용접이음의 피로 시험과 해석 (Fatigue Test and Analysis of Multi-point Spot Welded Joints)

  • 주석재;이광후
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.175-180
    • /
    • 2001
  • In real structure, multi-point spot welded joints are more frequently used than a single-point spot welded joint. Most researches, however, have been focused to a single-point spot welded joint until now. In this paper, the fatigue behavior of multi-point spot welded joints are investigated both experimentally and analytically using the finite elements. The local strain approach is used rather than the stress intensity factor approach to estimate the fatigue life since the former is quite simple and straightforward. It is found that the fatigue behavior of multi-point spot welded joints is different from that of single-point spot welded joints. The local strain approach is still applicable to multi-point spot welded joints.

  • PDF

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식 (Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension)

  • 심도준;김윤재;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

균열선단 특이요소를 이용한 직교이방성판의 응력확대계수 결정에 관한 연구 (A Study on Determination of Stress Intensity Factor of Orthotropic Plates Using Crack Tip Singular Element)

  • 진치섭;최현태;이홍주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.124-128
    • /
    • 1991
  • Wood, laminates, reinforced concrete, and some special types of metals systems with controlled grain orientation are often orthotropic and at least rectilinearly anisotropic from point to point, if regarded as homogeneous media. Orthotropic bodies where a crack is not associated with a plane of elastic symmetry may be conveniently treated as a crack problem in a generally anisotropic body. At this work, approach for the determination of the stress intensity factors (SIF) of anisotropic body using crack tip singular elements is presented. Caculated values are in good agreement with the others.

  • PDF

차량 복합판형부품의 설계개선 기법들 (Design Enhancements for Automotive Integrated Shell Structures)

  • 이형일;서현
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1103-1114
    • /
    • 2000
  • Recent attempt to enhance the safety against collision reshaped the simple shell structures into the integrated complex shell structures. Moreover, due to various regulations continuously tightened for environment protection, weight reduction of automobiles becomes an increasingly important issue. Auto parts lightening is mainly accomplished by more reasonable design, adoption of lighter materials and miniaturization of the auto bodies. Focusing on the locally enhanced design approach among the above three ways, we here attempt to develop a patching optimization method, and also to determine the thicknesses of an integrated shell structure, both bringing a specified amount of stress relaxation. We first select a cross member as a patching optimization model. Based on the finite element stress calculations, we relieve the stress of cross member by patching in two ways-nonuniform thickness patching and optimized uniform thickness patching, the latter of which is more effective in a practical point of view for the preset amount of stress relaxation. Selecting a box type subframe as another finite element analysis model, we then determine the thickness of each part by axiomatic design approach for a preset amount of stress relaxation. The patching methodology and the axiomatic approach adopted in this work can be applied to the other complex shell structures such as center member and lower control arm.

Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

  • Kim, Ji-Su;Lee, Han-Sang;Kim, Jong-Sung;Kim, Yun-Jae;Kim, Jin-Won
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.340-350
    • /
    • 2015
  • This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

보통 콘크리트의 응력-변형관계에 대한 실험적 연구 (A Experimental Study of Stress-Strain Relation of Normal Concrete)

  • 김화중;안상건;박정민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 1991
  • It was achieved to formulate numerically the stress-strain relationship of concrete, which is a fundamemtal factor for the Elasto-Plastic analysis of concrete structures, for normal concrete by using random statistics. As a result of experiment, in the shape of stress-strain curves of normal concrete it has approach linear from first loading to peak point, and after that point deformation increased radically and specimens were brokendown abruptly. From the multiple linear regression, and obtained the exponential equaion for stress-strain relationship of concrete as follows: $\sigma$/$\sigma$max=e(1-$\varepsilon$/$\varepsilon$max)$\varepsilon$/$\varepsilon$max

  • PDF

파괴역학을 이용한 원판형 부재의 잔류응력 측정 (Residual Stress Measurement for Circular Disk Using Fraction Mechanics Approach)

  • 강기주;최성렬
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1218-1226
    • /
    • 1993
  • 본 연구에서는 기존의 점진균열법을 개량하여 원판의 잔류응력 분포를 측정하기 위한 새로운 방법을 제시하였으며 이것의 타당성을 입증하기 위한 유한요소 해석(finite element analysis)과 실험을 수행하였다.

1mm 가상 노치 반경을 이용한 용접부 피로강도 평가에 관한 연구 (Application of 1mm fictitious notch radius approach to the fatigue strength assessment of welded joint)

  • 김유일;강중규;허주호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.275-277
    • /
    • 2004
  • Fictitious notch radius approach is based on the Neuter's microstructural support hypothesis which assumes that fatigue crack is governed by highly stressed volume of the material right on the weld toe area rather than the surface stress at a pin point of weld toe area. Variety of successes have been achieved in applying this methodology to the fatigue of welded joint, hence, it became one of recommended design procedure in IIW's recommendation as well as many ship classification societies. 1mm fictitious notch radius approach was applied to the various fatigue problems of welded joints in this study covering the effect of weld size, notch stress calculation for 3D geometry and low cycle fatigue problem. It was found that fictitious notch radius approach fumed out to be very effective and accurate in dealing with fatigue strength of welded joint.

  • PDF