• 제목/요약/키워드: stress fiber

검색결과 1,334건 처리시간 0.03초

고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석 (Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials)

  • 이상호;장일영;김효진;나혁층
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

근모량에 따른 식생호안의 전단강도와 침식특성 분석 (Analyses of Shear Stress and Erosion Characteristic in a Vegetated Levee Revetment with Root Fiber Quantity)

  • 최흥식;이웅희
    • Ecology and Resilient Infrastructure
    • /
    • 제1권1호
    • /
    • pp.29-38
    • /
    • 2014
  • 본 연구는 식생호안의 안정성 평가에 중요한 인자인 식생 근모량에 따른 식생호안의 전단강도와 침식특성을 분석하였다. 식생호안의 평균근모량은 자체 제작한 채취기를 이용하여 측정하였다. 본 연구에서 사용된 식생은 식생호안에서 다소 우점종인 달뿌리풀이다. 흐름 특성별 실험결과 근모량이 증가함에 따라 토양의 전단강도가 증가함을 확인하였고, 아울러 근모량의 증가에 따라 침식율은 지수함수적으로 감소함을 확인하였다. 식생토양의 전단강도가 증가함에 따라 침식율이 지수함수적으로 감소되어 근모량에 기인한 전단강도의 증가는 침식 저항능력의 증가를 가져왔다. 아울러 근모량에 따른 전단강도와 침식율의 상관분을 실시하여 높은 상관계수를 가진 식을 제시하였다. 식생을 가진 호안의 수리적 안정성에는 근모량의 증가에 의한 전단강도와 유수의 특성인 Froude수에 지배적임을 확인하였다.

단섬유 복합재료 사출성형물의 잔류응력 측정 (Measurement of Residual Stress Distribution in Injection-Molded Short Fiber Composites)

  • 김상균;이석원;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.61-63
    • /
    • 2001
  • Residual stress distribution in injection-molded short fiber composites was determined using layer-removal method. Polysterene with 3 vol% carbon fibers was injection-molded into the tensile specimen. With milling machine layer-removal process was conducted and the curvature data were acquired. Treuting and Read analysis which is assuming isotropic material, and White analysis considering anisotropy due to the fiber orientation were used to calculate residual stress of the flow direction through the thickness direction and compared with each other.

  • PDF

광섬유 표면의 기계적 손상에 대한 잔류응력 분포의 변화 (Gradient of the Residual Stress distribution in the Mechanical Defect on the Optical Fiber Surface)

  • 신인희;김덕영
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2005년도 하계학술발표회
    • /
    • pp.206-207
    • /
    • 2005
  • The gradient of the residual stress distribution in the mechanical defect on the optical fiber surface was investigated. This gradient of the residual stress distribution appeared in both of the core and the clad of the mechanical defect region on the optical fiber. The residual stress measurement was suggested as a investigation method of the mechanical defect on the optical fiber.

  • PDF

Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis

  • Er, Ozgur;Kilic, Kerem;Esim, Emir;Aslan, Tugrul;Kilinc, Halil Ibrahim;Yildirim, Sahin
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.434-439
    • /
    • 2013
  • PURPOSE. The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS. A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of $45^{\circ}$ to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS. FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION. Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the postdentin interface.

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발 (Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets)

  • 김성도;김성수
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

손상역학을 이용한 섬유강화 복합재료의 피로해석 (Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics)

  • 임동민;윤인수;강기원;김정규
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.