• 제목/요약/키워드: stress failure

Search Result 2,875, Processing Time 0.03 seconds

An Analytical Study on Limits of Debonding Failure for RC Beams strengthened with NSM Reinforcements (NSM 보강 RC보의 부착파괴 제한에 관한 해석적 연구)

  • Jung, Woo-Tai;Park, Jong-Sup;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.153-156
    • /
    • 2006
  • This paper presents an analytical results on limits of debonding failure for RC beams strengthened with near-surface mounted(NSM) CFRP strips. An analytical model was derived to predict the failure mode and the maximum load. An analytical model has two assumptions. The first is that the debonding failure occurs at the epoxy-concrete interfaces. The second is that the debonding failure occurs at the end of the FRP reinforcement due to concentration of shear stress. Results of the comparison of existing test data and analytical model data have predicted the failure mode and the maximum load well. Also, this paper proposed limits of debonding failure to prevent the debonding using the strengthening area and the groove depth.

  • PDF

Fracture simulation of SFR metallic fuel pin using finite element damage analysis method

  • Jung, Hyun-Woo;Song, Hyun-Kyu;Kim, Yun-Jae;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.932-941
    • /
    • 2021
  • This paper suggests a fracture simulation method for SFR metallic fuel pin under accident condition. Two major failure mechanisms - creep damage and eutectic penetration - are implemented in the suggested method. To simulate damaged element, stress-reduction concept to reduce stiffness of the damaged element is applied. Using the proposed method, the failure size of cladding can be predicted in addition to the failure time and failure site. To verify the suggested method, Whole-pin furnace (WPF) test and TREAT-M test conducted at Argonne National Laboratory (ANL) are simulated. In all cases, predicted results and experimental results are overall in good agreement. Based on the simulation result, the effect of eutectic-penetration depth representing failure behavior on failure size is studied.

The Effects of Multidisciplinary Approach for Children with Feeding Disorder and Failure to Thrive on Their Mothers (섭식장애와 성장장애를 보이는 아동에 대한 다학제적 중재가 환모에게 미치는 영향)

  • An, Kyung Jin;Joung, Yoo Sook;Jang, Byong Su;Kwon, Jeongyi
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • Objectives : The aim of this study was to determine whether intervention using a multidisciplinary approach affects maternal mental health, parenting stress, and sense of parenting competence in children with feeding disorder and failure to thrive (FTT). Methods : Children with feeding disorder and FTT were randomized to the intervention group (N=11) or control group (N=8). We administered the Korean standardization of Parent Temperament Questionnaire for Children (K-PTQ) in both groups before intervention, and the Korean version of the Parenting Stress Index-Short Form (K-PSI-SF), Korean version of the Parenting Sense of Competence (K-PSOC), Korean version of the Beck's Depression Inventory (K-BDI), Korean version of the Beck Anxiety Inventory (K-BAI), and Korean version of the Mood Disorder Questionnaire (K-MDQ) in both groups before and after the intervention. Results : In the intervention group, the K-BDI (p=.068), K-BAI (p=.068), and K-MDQ (p=.066) scores tended to show a decline, the K-PSI-SF scores for stress related to child learning showed a significant decline, and the K-PSOC scores for sense of parenting competence showed significant improvement. However, no significant changes were observed in the control group. Conclusion : Use of a multidisciplinary approach improved maternal mental health, parenting stress, and sense of competence. Comparison of these results with those of normal control will be necessary in a future study.

Behavior of K0-Consolidated Clay in Torsion Shear Tests (비틀림 전단시험(剪斷試驗)에 의한 K0-압밀점토(壓密粘土)의 거동(擧動))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.151-157
    • /
    • 1988
  • A series of torsion shear tests were performed according to various stress-paths on hollow cylinder specimens of $K_0$-consolidated clay to investigate the influence of rotation of the principal stresses on the stress-strain and strength characteristics. The effects of stress-paths and reorientation of principal stress were mainly observed in the prefailure stress-strain behavior. The experimentally obtained failure surface from torsion shear tests could practically be modeled by an isotropic failure criterion. Coupling effects between stresses and strains were investigated when both torsion shear and vertical stresses were applied. The work-space in torsion shear tests was illustrated and the relation between stresses and strain increments was also investigated in the work-space.

  • PDF

A Method to Predict the Open-Hole Tensile Strength of Composite Laminate (원공을 가지는 복합재 적층판의 인장강도 예측 기법)

  • Lee, Heun-Ju;Shin, In-Soo;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2011
  • The characteristic length method used to determine a laminate's strength generally requires the test for un-notched and notched laminates and finite element analysis together. In this paper, the methods used to predict the stress distribution and tensile characteristic length of open-hole laminates using the stress concentration factor and equivalent material properties are proposed. These methods do not require data on the failure load of open-hole laminates or finite element analysis. Once the stress and characteristic length have been determined, the failure load of the open-hole laminate can be calculated. The proposed method considers the effect of the material properties as a parameter and therefore can be applied to a variety of materials. The stress distribution is verified by comparing with a finite element analysis and test results. The predicted failure load shows a maximum deviation of 8% from the test results.

End Stress Analysis of Overlaid Concrete Structures Subjected to Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 단부 온도응력 해석)

  • 윤우헌
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 1998
  • The vertical tensile stress, ${\sigma}_y$, in the contact zone between the overlay (mortar layer) and substratum (base concrete) can be the main cause of the failure phenomenon of overlaid concrete structures. The development of tensile stress, ${\sigma}_y$, due to external rainy condition was analytically investigated using finite element method. Rainfall intensity $(n_R\;=\;1/a,\;t_R\;=\;10min,\;60min)$, thickness of overlay (do=1,2,4,10 cm) and overlay material (CM,ECM,EM) were the main variables in the analyses. An equation was suggested with which the development of vertical tensile stress, ${\sigma}_y$, in the rainy condition could be determined. Using this equation, it is possible to select proper material properties and overlay thicknesses to prevent failure in the contact zone due to thermally transient condition caused by rainfall.

Elastic-Plastic Stress Analysis and Fatigue Lifetime Prediction of Cross-Bores in Autofrettaged Pressure Vessels

  • Koh, Seung-Kee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.935-946
    • /
    • 2000
  • Elastic-plastic stress analysis has been performed to evaluate the fatigue life of an autofrettaged pressure vessel containing cross-bores subjected to pulsating internal pressure of 200 MPa. Finite element analyses were used to calculate the residual and operating stress distributions of the pressure vessel due to the autofrettage process and pulsating internal pressure, respectively. Theoretical stress concentration factors of 3.06, 2.58, and 2.64 were obtained at the cross-bore of the pressure vessel due to internal pressure, 50%, and 100% autofrettage loadings, respectively. Local stresses and local strains determined from the elastic-plastic finite element analysis were employed to calculate the failure location and fatigue life of the pressure vessel with radial cross-bores, incorporating the low-cycle fatigue properties of the pressure vessel steel and fatigue damage parameters. Increase in the amount of overstrain by autofrettage process moved the crack initiation location from the inner radius toward a mid-wall, and extended the crack initiation life. Predicted fatigue life of the fully autofrettaged pressure vessel with cross-bores increased about 50%, compared to the unautofrettaged pressure vessel. At the autofrettage level higher than 50%, the failure location and fatigue life of the pressure vessel were not significantly influenced by the autofrettage level.

  • PDF

A Study on the Sealing Characteristics of Multi-contact O-rings (다접오링의 밀봉특성 해석에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.52-57
    • /
    • 2012
  • This study presents sealing characteristics of multi-contact o-rings as functions of strain, compression stress, and contact normal stress using a FEM technique. The FEM results on the sealing characteristics show that the maximum strain, maximum compression stress, and maximum contact normal stress of multi-contact o-rings are approximately 1.7 times higher than those of conventional o-rings. This is due to a U-grooved cross section of multi-contact o-rings, and the multi-contact o-rings with a U-groove show more effective in sealing for high pressure vessels, valves, and gas equipments. And the extrusion failure in the multi- contact o-ring does not produce for an increased gas pressure due to a U-groove. This may extend sealing life compared to that of a conventional o-ring.

A study of the sulfide stress corrosion cracking characteristic of A106 Gr B steep pipe weldment (황화수소환경에서 A106 Gr-B 강 용접부의 응력부식균열 특성 평가)

  • Lee, Gyu-Young;Park, Kwang-Jin;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.114-119
    • /
    • 2007
  • Sulfide stress cracking (SSC) of materials exposed to oilfield environment containing hydrogen sulfide $(H_{2}S)$ has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_{2}S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $(H_{2}S)$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

The sulfide stress corrosion cracking characteristics of multi-pass welded A106 Gr B steep pipe (A106 Gr B강 다층용접부의 황화물 응력부식균열 특성)

  • Lee, Gyu-Young;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.20-25
    • /
    • 2008
  • Sulfide stress corrosion cracking (SSCC) of materials exposed to oilfield environment containing hydrogen sulfide ($H_2S$) has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_2S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $H_2S$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF