• Title/Summary/Keyword: stress failure

Search Result 2,869, Processing Time 0.034 seconds

The structural analysis and design methods considering joint bursting in the segment lining (조인트 버스팅을 고려한 세그먼트 라이닝 구조해석 및 설계방법)

  • Kim, Hong-Moon;Kim, Hyun-Su;Jung, Hyuk-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1125-1146
    • /
    • 2018
  • Segment lining applied to the TBM tunnel is mainly made of concrete, and it requires sufficient structural capacity to resist loads received during the construction and also after the completion. When segment lining is design to the Limit State Design, both Ultimate Limit State (ULS) and Service Limit State (SLS) should be met for the possible load cases that covers both permanent and temporary load cases - such as load applied by TBM. When design segment lining, it is important to check structural capacity at the joints as both temporary and permanent loads are always transferred through the segment joints, and sometimes the load applied to the joint is high enough to damage the segment - so called bursting failure. According to the various design guides from UK (PAS 8810, 2016), compression stress at the joint surface can generate bursting failure of the segment. This is normally from the TBM's jacking force applied at the circumferential joint, and the lining's hoop thrust generated from the permanent loads applied at the radial joint. Therefore, precast concrete segment lining's joints shall be designed to have sufficient structural capacity to resist bursting stresses generated by the TBM's jacking force and by the hoop thrust. In this study, bursting stress at the segment joints are calculated, and the joint's structural capacity was assessed using Leonhardt (1964) and FEM analysis for three different design cases. For those three analysis cases, hoop thrust at the radial joint was calculated with the application of the most widely used limit state design codes Eurocode and AASHTO LRFD (2017). For the circumferential joints bursting design, an assumed TBM jack force was used with considering of the construction tolerance of the segments and the eccentricity of the jack's position. The analysis results show reinforcement is needed as joint bursting stresses exceeds the allowable tensile strength of concrete. This highlights that joint bursting check shall be considered as a mandatory design item in the limit state design of the segment lining.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

The Effect of Surface Defects on the Cyclic Fatigue Fracture of HEROShaper Ni-Ti rotary files in a Dynamic Model: A Fractographic Analysis (Fractographic 분석을 통한 HEROShaper 니켈티타늄 전동 파일의 피로파절에 미치는 표면결함의 역할)

  • Lee, Jung-Kyu;Kim, Eui-Sung;Kang, Myoung-Whai;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.130-137
    • /
    • 2007
  • This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.

THE EFFECT OF THERMOCYCLING ON THE DURABILITY OF DENTIN ADHESIVE SYSTEMS (열순환이 상아질 접착제의 결합 내구성에 미치는 영향)

  • Moon, Young-Hoon;Kim, Jong-Ryul;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.222-235
    • /
    • 2007
  • The objectives of this study was to evaluate the effect of thermocycling on the ${\mu}TBS$ (microtensile bond strength) to dentin with four different adhesive systems to examine the bonding durability. Freshly extracted $3^{rd}$ molar teeth were exposed occlusal dentin surfaces, and randomly distributed into 8 adhesive groups 3-steps total-etching (Scotchbond Multi-Purpose Plus; SM, All Bond-2; AB), 2-steps total-etching (Single Bond; SB, One Step plus; OS), 2-steps self-etching (Clearfil SE Bond; SE, AdheSE AD) and single-step self-etching systems (Promp L-Pop; PL, Xeno III; XE) Each adhesive system in 8 adhesives groups was applied on prepared dentin surface as an instruction and resin composite (Z250) was placed incrementally and light-cured. The bonded specimens were sectioned with low-speed diamond saw to obtain $1\times1mm$ sticks after 24 hours of storage at $37^{\circ}C$ distilled water and proceeded thermocycling at the pre-determined cycles of 0, 1,000 and 2,000. The ${\mu}TBS$ test was carried out with EZ-tester at 1mm/min. The results of bond strength test were statistically analyzed using one-way ANOVA/ Duncan's test at the a < 0.05 confidence level. Also, the fracture mode of debonded surface and the interface were examined under SEM. The results of this study were as follows ; 1. 3-step total etching adhesives showed stable, but bond strength of 2-step adhesives were decreased as thermocycling stress. 2. SE showed the highest bond strength, but single step adhesives (PL, XE) had the lowest value both before and after thermocycling. 3 Most of adhesives showed adhesive failure. The total-etching systems were prone to adhesive failure and the single-step systems were mixed failure after thermocycling. Within limited results of this study, the bond strength of adhesive system was material specific and the bonding durability was affected by the bonding step/ procedure of adhesive Simplified bonding procedures do not necessarily imply improved bonding performance.

Factors Related to Early Smoking of High School Students in Daegu City and Gyeongsangbuk-do Province (대구, 경북지역 고등학생의 조기흡연과 관련된 요인)

  • Lee, Kyeong-Soo;Kang, Pock-Soo;Hwang, Tae-Yoon;Kim, Sang-Kyu
    • Journal of agricultural medicine and community health
    • /
    • v.33 no.1
    • /
    • pp.90-100
    • /
    • 2008
  • =Objectives: The aim of this study was to investigate the smoking rate and the related factors to early smoking of high school students.Methods: A questionnaire was administered to 920 students in 3 high schools in Daegu Metropolitan Results: Of total respondents, 1.8% had experience of smoking. Of those, 20.2% citied curiosity, 9.0% cited upon recommendation of friends, and 6.2% cited stress management as the main reason for their smoking. Separately, 53.1% responded habitually and 26.5% responded stress management as the main reason for continuing smoking. Of total former smokers, 68.4% said 'worry about their health' as the main reason for quitting smoking. Of those who failed to quit smoking, 58.7% cited 'weakness of will' as the main reason for their failure. Of total respondents, 10.8% were smoking currently. 'Smoking of family member'(p<0.01) and 'intent to smoke'(p<0.05) were significantly associated to early smoking of the subjects.In multivariate logistic regression analysis, 'higher levels of stress' and 'smoking of family member' were significant related factors to early smoking.Conclusions: Amid growing number of early smokers, it is imminent to identify the actual state of discourage smoking. In addition, education programs need to be developed to assist early smokers in quitting smoking and prevent smoking among youth.

In vivo Study of the Renal Protective Effects of Capsosiphon fulvescens against Streptozotocin-induced Oxidative Stress (스트렙토조토신 유발 당뇨 쥐의 산화스트레스에 대한 매생이 추출물의 신장 보호 효과)

  • Nam, Mi-Hyun;Koo, Yun-Chang;Hong, Chung-Oui;Yang, Sung-Yong;Kim, Se-Wook;Jung, Hye-Lim;Lee, Hwa;Kim, Ji-Yeon;Han, Ah-Ram;Son, Won-Rak;Pyo, Min-Cheol;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, we evaluated the effect of Capsosiphon fulvescens extract (CFE) and its active compound, pheophorbide A (PhA), on diabetic kidney failure. Diabetes mellitus (DM) was induced by a single intraperitoneal injection of streptozotocin (STZ; 40 mg/kg body weight (BW)). After a week, the rats were orally administered CFE (4 and 20 mg/kg BW) or PhA (0.2 mg/kg BW) once a day for 9 weeks. After scarification, renal tissue samples were collected for biochemical and histochemical analyses. Our study showed that the treatment with CFE and PhA significantly decreased lipid peroxidation level and the activities of glutathione peroxidase and glutathione-S-transferase (p<0.05), but it increased glutathione level and the activities of glutathione reductase, superoxide dismutase, and catalase in the renal tissues (p<0.05). The CFE- and PhA-treated rats with DM showed improved histochemical appearance and decreased abnormal glycogen accumulation. Therefore, we suggest that PhA-containing CFE could exert renal protective effects against STZ-induced oxidative stress.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Effects of Egg Gel Formation According to Mixing Ratio of Sugar Sources, NaCl and Sucrose (당 종류 및 NaCl과 Sucrose 배합비에 따른 계란찜의 겔 형성 효과)

  • Kim, Kyung-Mee;Kim, Ok-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This study investigated the changes in textural characteristics that occurred by adding maltose syrup, dextrin, and sucrose to whole egg gels, by assessing coagulation after cooling. It also examined the optimal NaCl and sucrose concentrations for whole egg gels sensory evaluations, and then studied how the addition of sucrose effected gel formation and textural characteristics under optimal NaCl concentration. The additions of maltose syrup, dextrin, and sucrose, presented some color changes. The greater the addition of maltose syrup or dextrin, the lower the L, a, and b values of the whole egg gel and whole egg liquid, and ultimately the color turned dark bluish green. With increasing additions of sucrose, maltose syrup, and dextrin, the viscosity of the whole egg liquid increased slightly. In terms of the mechanical texture characteristic of the gel, the texture was most elastic with the 0.8% addition of sucrose, and hardness decreased by increasing the ratio of added sucrose. Increasing amounts of maltose syrup resulted in less hardness and SF. And for dextrin, the SF increased up to 2.5 and then decreased, and hardness decreased with increasing amounts of dextrin. Based on sensory evaluations, the 0.8% addition of NaCl was significantly preferred(p<0.05), in terms of salty taste. The overall preference scores indicated that the whole egg gel made with 0.3% sucrose and the optimal NaCl concentration(0.8%) was most preferred, and each sample was significant(p<0.05). Under the optimal 0.8% NaCl concentration increasing the sucrose concentration resulted in a darker egg gel color, in terms the L value. SF, NF, and hardness, which are mechanical texture parameters, were when 0.8% sucrose and the optimal NaCl concentration of 0.8% were added to whole egg liquid, in preparing the whole egg gel.

  • PDF

MICROLEAKAGE AND SHEAR BOND STRENGTH OF FLOWABLE COMPOSITE RESIN (Flowable Composite Resin의 미세변연누출 및 전단결합강도)

  • 박성준;오명환;김오영;이광원;엄정문;권혁춘;손호현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.332-340
    • /
    • 2001
  • Flowable composite resin has lower filler content, increased flow, and lower modules of elasticity. It is suggested that flowable composite resin can be bonded to the tooth structure intimately and absorb or dissipate the stress. Therefore, it may be advantageous to use flowable composite resin for the base material of class II restoration and for the class V restoraton. The purpose of this study was to evaluate the microleakage and shear bond strength of four flowable composite resins (Aeliteflo, Flow-It, Revolution, Ultraseal XT Plus) compared to Z100 using Scotchbond Multi Purpose dentin bonding system. To evaluate the microleakage, notch-shaped class V cavities were prepared on buccal and lingual surfaces of 80 extracted human premolars and molars on cementum margin. The teeth were randomly divided into non-thermocycling group (group 1) and thermocycling group (group 2) of 40 teeth each. The experimental teeth of each group were randomly divided onto five subgroups of eight samples (sixteen surfaces). The Scotchbond Multi-Purpose and composite resin were applied for each group following the manufacturer's instructions. the teeth of group 2 were thermocycled five hundred times between 5$^{\circ}C$ and 55$^{\circ}C$. The teeth of group 2 were placed in 2% methylene blue dye for 24 hours, then rinsed with tab water. The specimens were embedded in clear resin, and sectioned longitudinally with a diamond saw. The dye penetration on each of the specimen were observed with a stereomicioscope at $\times$20 magnification. To evaluate the shear bond strength, 60 teeth were divided into five groups of twelve teeth each. The experimental teeth were ground horizontally below the dentinoenamel junction, so that no enamel remained. After applying Scotchbond Multi-Purpose on the dentin surface, composite resin was applied in the shape of cylinder. The cylinder was 4mm in diameter and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. After shear bond strength measurement, mode of failure was evaluated with a stereomicroscope at $\times$30 magnification. All data were statistically analyzed by One Way ANOVA and Student-Newman-Keuls method. The correlation between microleakage and shear bond strength was analyzed by linear regression. The results of this study were as follows ; 1. In non-thermocycling group, the leakage value of Z100 was significantly lower than those of flowable composite resins at the enamel and dentin margin, margin, except that Revolution showed the lower leakage value than that of Z100 at the dentin margin (p<0.05). 2. In thermocycling group, the leakage values of Z100 and Ultraseal XT Plus were lower than those of other subgroup at the enamel and dentin margin, except that Flow-It showed the lower leakage value than that of Ultraseal XT Plus at the dentin margin (p<0.05). 3. The leakage value of Z100 and Ultraseal XT Plus in thermocycling group were not higher than that in non-thermocycling group at the enamel margin. The leakage value of Z100 in thermocycling group was not higher than that in non-thermocycling group at the dentin margin (p<0.05). 4. As for the shear bond strength measurement, there were no statistically significant differences among groups (p<0.05). The shear bond strengths given in descending order were as follows: Z100(16.81$\pm$2.98 MPa), Flow-It(14.8$\pm$4.43 MPa), Aeliteflo(14.34$\pm$3.69 MPa), Revolution(13.46$\pm$4.23 MPa), Ultraseal XT Plus(12.83$\pm$3.16 MPa). 5. Failure modes of all specimens were adhesive failures. 6. There was no correlation between microleakage and shear bond strength.

  • PDF