• Title/Summary/Keyword: stress distribution shape

Search Result 418, Processing Time 0.026 seconds

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여)

  • Kim, Seon-Jin;Kim, Young-Sik;Jeong, Hyeon-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

INFLUENCE OF VARIOUS PROPERTIES OF POST AND CORE ON THE STRESS DISTRIBUTION IN ENDODONTICALLY TREATED TOOTH (다양한 포스트와 코어의 물성이 근관치료된 치근의 응력분산에 미치는 영향)

  • Cho Jin-Hyun;Lee Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Statement of problem : The various kinds of properties of post and core may affect the stress distribution to the root of endodontically treated teeth Purpose: To evaluate the influence of various kinds of properties of post and core to the stress distribution to the root of endodontically treated teeth. Material and methods: Mandibular first premolar, prepared by general shape of post and core with gold crown, was used to two dimensional axisymmetric modeling for finite element analysis. Then property values of 8 different kinds of post and core was substituted for each. Finally, stress distribution shown areas around the root of post and core was analysed after applying 50N of vortical and oblique load. Results: 1. Stress value of oblique load was much higher than the maximum stress value of vertical load. 2. Under oblique load, very concentrated stress was located on post periapical area and variations in stress were very severe. Contrary to this, stress distribution was relatively uniform in vertical load. 3. Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. 4. Stress change according to the properties of core was shown only in the cervical area of post and below core as the higher elastic modulus, then increased in stress. 5. Post and core with medium value of elastic modulus showed relatively uniform stress distribution. Conclusions: Post materials with higher elastic modulus showed relatively more apically focused stress, and post materials with lower elastic modulus showed stress focused on cervical area on the axial wall of post. Stress change according to the properties of core was shown only in the cervical area of post and below core.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

Stress Distribution of Buried Concrete Pipe Under Various Environmental Conditions

  • Lee, Janggeun;Kang, Jae Mo;Ban, Hoki;Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.65-72
    • /
    • 2016
  • There are numerous factors that affect stress distribution in a buried pipe, such as the shape, size, and stiffness of the pipe, its burial depth, and the stiffness of the surrounding soil. In addition, the pipe can benefit from the soil arching effect to some extent, through which the overburden and surcharge pressure at the crown can be carried by the adjacent soil. As a result, the buried pipe needs to support only a portion of the load that is not transferred to the adjacent soil. This paper presents numerical efforts to investigate the stress distribution in the buried concrete pipe under various environmental conditions. To that end, a nonlinear elasto-plastic model for backfill materials was implemented into finite element software by a user-defined subroutine (user material, or UMAT) to more precisely analyze the soil behavior surrounding a buried concrete pipe subjected to surface loading. In addition, three different backfill materials with a native soil were selected to examine the material-specific stress distribution in pipe. The environmental conditions considering in this study the loading effect and void effects were investigated using finite element method. The simulation results provide information on how the pressures are redistributed, and how the buried concrete pipe behaves under various environmental conditions.

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

A Study on The Optimum Shape of Bellows Using Response Surface Method (반응표면법을 이용한 벨로우즈의 최적형상에 관한 연구)

  • Kim H.J.;Kim H.S.;Park J.H.;Kim J.P.;Kim H.G.;Lee J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.441-442
    • /
    • 2006
  • It is attempted to find out the optimal shape of U-type bellows using the finite element analysis. The design factors, mountain height, length, thickness, and the number of convolutions are considered and the proper values are chosen fur the simulation. The results show that as the number of convolutions reduces, the volume decreases while the stress increases. However, as the number of convolutions increases, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the mass and stress are decreasing at a certain lower value region. Also, we investigated shape optimization with considering maximum stress distribution tendency.

  • PDF

A study on the stress distribution and plastic area propagation in the beams with a circular hole (원형공을 가진 보의 응력분포와 소성역 전파거동에 관한 연구)

  • 김희철;왕지석;이경호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.225-239
    • /
    • 1985
  • The beams with a circular hole are often used for constructing structures. The center of the circular hole is normally located in neutral axis and the stress state around the hole due to bending moment is trivial. But the stress level around the hole due to shear force is expected to be significant especially in the case of beams made of shape steels. In this paper, the stress distributions around the circular hole of beams were presented. Using polar coordinates and generallized stress function, the formulas of stress components were derived. The aspects of plastic area propagations based on von Mises yield criteria were also shown graphically. In order to verify the formulas presented in this paper, a beam of I-shape steel with a circular hole was made and the strains around the hole were measured under various loading conditions. The experimental results were proved to coincide fairly well with the calculated values.

  • PDF

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식 균열성장해석)

  • Shin, K.I.;Park, J.H.;Joo, J.W.;Shin, E.S.;Kim, H.D.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.19-24
    • /
    • 2000
  • Stress corrosion crack growth is simulated after assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noticed that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF