• Title/Summary/Keyword: stress distribution measurement

Search Result 213, Processing Time 0.032 seconds

A Study on the Measurement of Residual Stress in Rolled Steel for Automobile using X-ray Diffraction (X선 회절을 이용한 자동차 압연강의 잔류응력 측정에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.150-157
    • /
    • 2002
  • In textured material, diffraction angle $2{\theta}$ usually shows a nonlinear relation against $sin^2{\psi}$ due to elastic anisotropy of crystals. SPHD and SPCD steel is cold-rolled carbon steel for automobile. The characteristics X-ray for stress measurement is Cr $K_{\alpha}\;and\;Mo\;K_{\alpha}$ characteristic X-ray. The $2{\theta}-sin^2{\psi}$ diagram under elastic strain seems to have a linear behavior using regression line of data but has a nonlinear behavior in distribution of data by Cr $K_{\alpha}$ characteristic X-ray. As the plastic strain of specimen increases, the nonlinearity of $2{\theta}$ with respect to $sin^2{\psi}$ increases remarkably. On the other hand, the diffraction angle $2{\theta}$ by Mo $K_{\alpha}$ characteristic X-ray shows a good linearity on $2{\theta}-sin^2{\psi}$ diagram under plastic strain as well as elastic strain. Therefore, this paper presents the measurement of residual stress in cold-rolled carbon steel for automobile using penetration depth of Mo $K_{\alpha1}$ characteristic X-ray and multiplicity factor of crystal diffraction plane.

System Design and H/W Development of the Residual Stress Measurement for Ferromagnetic thin Sheet (강자성 박판소재의 잔류응력 측정 시스템의 설계 및 제작)

  • 김상원;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.50-57
    • /
    • 2001
  • Magnetic inductive probe was designed and assembled for sensing the residual stress developed in the ferromagnetic thin sheet. The residual stress measurement system with this probe could resolve the residual stresses developed in the sheet in terms of principal stress orientation, and magnitude of the principal stress. It was consumed that the obtained probe output voltage from the qualified ferromagnetic Fe-42Ni lead frame sheet and quality-rejected sheet is effectively determined using the developed device. The lead frame sheet which has accumulated a high level of residual stress always showed a distinctive stress distribution and magnitude compared with those of qualified lead frame sheet. Those differences were well resolved as functions of input current or used frequency.

  • PDF

Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity (스트레인 게이지와 반사형 광탄성법을 이용한 굽힘을 받는 외팔보 시편 구멍 주위의 응력측정)

  • Baek, Tae-Hyun;Park, Tae-Geun;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error.

Applicability of exponential stress-strain models for carbonate rocks

  • Palchik, Vyacheslav
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.919-925
    • /
    • 2018
  • Stress-strain responses of weak-to-strong carbonate rocks used for tunnel construction were studied. The analysis of applicability of exponential stress-strain models based on Haldane's distribution function is presented. It is revealed that these exponential equations presented in transformed forms allow us to predict stress-strain relationships over the whole pre-failure strain range without mechanical testing of rock samples under compression using a press machine and to avoid measurements of axial failure strains for which relatively large values of compressive stress are required. In this study, only one point measurement (small strain at small stress) using indentation test and uniaxial compressive strength determined by a standard Schmidt hammer are considered as input parameters to predict stress-strain response from zero strain/zero stress up to failure. Observations show good predictive capabilities of transformed stress-stress models for weak-to-strong (${\sigma}_c$ <100 MPa) heterogeneous carbonate rocks exhibiting small (< 0.5 %), intermediate (< 1 %) and large (> 1 %) axial strains.

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique (EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구)

  • Lee, Yeon-Ju;Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

Investigations of Accelerated Aged Polymeric Insulators Using Partial Discharge Signal Measurement and Analysis

  • Mekala, K.;Chandrasekar, S.;Ravindran, R. Samson
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.299-307
    • /
    • 2015
  • Reduction in pollution performance of polymeric insulators, aged due to water absorption stress and thermal stress, is a major threat to the reliable operation of power transmission and distribution system. Formation of partial discharges on the surface of wet polluted insulator plays a major role in determining the life time and pollution performance of outdoor polymeric insulators. However, reports on partial discharge characteristics of water absorption stress aged and thermal aged polymeric insulators are scanty. This paper discusses the pollution performance characteristics of accelerated aged polymeric insulators using the advanced ultra wide band PD signal measurement and analysis. Laboratory experiments on accelerated aged polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. PRPD pattern and Time-Frequency map analysis of PD signals were carried out. From the results, it can be speculated that PD analysis is a well suited technique to understand the pollution performance of aged polymeric insulators.

Study on the Thermal Deformation Characteristics of the Automotive Diesel Engine Piston (자동차용 디젤엔진 피스톤의 열변형 특성에 관한 연구)

  • 이교승;이진호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.162-173
    • /
    • 1997
  • A 3-dimensional finite element model was developed for the analysis of the automotive diesel engine piston. The model, which consists of a full piston to accomodate the eccentric bowl in the piston crown, is used to calculate steady state operating temperature, thermal stress and thermal deformation of the piston. Roundness measurement tests, which are new approaches to the analysis of piston abrasion and deformation, were done for the comparision of two states of a piston-before and after operation. Numerical prediction shows good agreement with roundness measurement test results.

  • PDF

Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures (극후물재 용접부 내부잔류응력 측정기술 및 특성)

  • Park, Jeong-ung;An, Gyu-baek;Woo, Wanchuck
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

Evaluation of Residual Stress in the U-shaped Copper Pipe (U자형 동관의 잔류응력 평가)

  • Kim S.Y.;Kim H.I.;Scok C.S.;Lee J.K.;Mo J.Y.;Park D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.622-626
    • /
    • 2005
  • The Residual stress is stress at the inside of materials after plastic deformation. Certainly, this residual stress have an effect on fatigue life. Therefore, it is very important that understanding residual stress at the inside of materials. But in case of U-shaped Pipe that it is dealt with a mailer in this paper, distribution of residual stress is very complicated and exactly become unknown caused by difficulty of measurement. Then, in this paper, we are evaluated residual stress at in the inside of materials by finite clement method program and verified validity by test.

  • PDF

Residual Stress Evaluation Caused by Press Forming and Welding of 600MPa Class Circular Steel Tube Using Hole-Drilling Strain Gage Method (홀드릴링 변형 게이지법을 이용한 600MPa급 원형 강관 제작상의 잔류응력평가)

  • Im, Sung Woo;Lee, E.T.;Shim, Hyun Ju;Kim, Jong Won;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.625-631
    • /
    • 2006
  • Residual stresses in structural materials are stresses that exist in the objective without the application of any service or other external loads. Manufacturing processes are the most common causes of residual stress. To examine the effect and the distribution of residual stress due to press forming and welding in the production of a 600MPa-class steel tube, a residual stress evaluation test was performed. The measurement used the Hole-Drilling Strain Gauge Method and evaluated the distribution of residual stress, which measured a total of 59 places near the welding line.